BILGE VORTICES ALONG A
SERIES-60 MODEL

by
Jean-Claude Tatinclaux

This research was carried out under the
Naval Ship Systems Command
General Hydromechanics Research Program
SR 009 01 01, administered by the
Naval Ship Research and Development Center
under Contract Nonr 1811(05)

IIHR Report No. 117

Iowa Institute of Hydraulic Research
The University of Iowa
Iowa City, Iowa

July 1969

Reproduction in whole or in part is permitted
for any purpose of the United States Government
BILGE VORTICES ALONG A SERIES-60 MODEL

by
Jean-Claude Tatinclaux

This research was carried out under the Naval Ship Systems Command General Hydromechanics Research Program SR 009 01 01, administered by the Naval Ship Research and Development Center under Contract No 1111 1811 (05)

IIHR Report No. 117

Iowa Institute of Hydraulic Research
The University of Iowa
Iowa City, Iowa

July 1969

Reproduction in whole or in part is permitted for any purpose of the United States Government
Bilge Vortices Along A Series-60 Model

Abstract

By measuring the velocity components by means of a five-hole directional probe, the secondary flow in the transverse plane at the stern of a Series-60 model has been investigated and show the presence of a vortex. The drag induced by the bilge vortices is estimated to be equal to about two percent of the surface drag. The streamlines in the bow region are determined and permit to conclude that the spiral motion which eventually develops into vortices already begins at the bow. It is suggested that the influence of the shape of the bow on the flow pattern in the bow region be further investigated.

Introduction

The previous experimental studies at the Institute of Hydraulic Research on the formation and development of bilge vortices and on the determination of vortical drag were performed on an ogive. These experiments were concerned with the formation and growth of the bilge vortices [1]*, the influence of the radius of curvature at the bilge [2], and with the effect of bilge keels and bulbous bow [3].

The ogive is, at best, an ideal representation of a ship-form. Since a 4-foot double model of the Series-60, 0.60 block ship form, originally used by Jin Wu for studying the turbulence in the wake [4], was available at the Institute, it was decided to investigate the bilge

* Numbers in brackets designate References at the end of report
vortices generated along an actual ship form, and to determine their induced drag. Furthermore, the flow pattern in the bow region was also studied experimentally in an attempt to shed some light on the processes of formation of these vortices.

Measurements

The double model used in this study was suspended in the test section of the open-throat wind tunnel of the Institute, see Fig. 1, by eight thin wires located so as to interfere as little as possible with the vortices. The measurements of the velocity components \(u, v, w \) were performed using a five-hole probe [5]. This probe is mounted in such a way as to rotate about a vertical axis passing through the tip of the probe. The determination of the components of the velocity vector proceeds as follows. The probe is rotated until its horizontal axis is located in the vertical plane containing the velocity vector, when the pressure difference between the two side holes in the horizontal plane is zero. The angle of rotation \(\alpha \) is read directly on a protractor attached to the probe. The ratio of the head difference between the top and bottom holes \(\Delta h \) to the head registered by the center hole \(h_c \) is proportional to the angle \(\beta \) of the velocity vector with the horizontal plane. A graphic description of the foregoing procedure is given in Fig. 2-a and the calibration curve of \(\Delta h/h_c \) versus \(\beta \) is shown in Fig. 2-b. If \(U \) is the magnitude of the velocity, then

\[
\begin{align*}
 u &= U \cos \beta \cos \alpha \\
 v &= U \cos \beta \sin \alpha \\
 w &= U \sin \beta
\end{align*}
\]

and since, in the present case, the ambient pressure is the atmospheric pressure, the quantity \(U \cos \beta \) is obtained directly from \(h_c \). When the wind tunnel is of the closed type, the average of the pressures registered
by the four side holes gives the ambient pressure [5].

1) Bilge Vortices

Previous investigations [1] had shown that a bilge vortex reaches its maximum strength at the stern of the body, and in the present study the measurements were limited to the transverse plane at the stern of the model. The components \(v \) and \(w \) of the velocity in this plane have been determined and a picture of the vortex can be obtained as shown in Fig. 3. The parameters "\(b \)" distance of the center of the vortex to the \(x-z \) plane of symmetry of the model, and "\(d \)" distance of the center of the vortex from the horizontal plane of symmetry of the double model, and the mean radius "\(a \)" of the vortex can be obtained directly from the figure. The circulation \(\Gamma \) is computed from the experimental data around a rectangular path enclosing the vortex. The drag induced by a pair of bilge vortices is then determined using the formula derived in [3] as

\[
D_v = \frac{\rho l^2}{2\pi} \left[\frac{1}{4} + \ln \frac{b-a+\sqrt{b^2-a^2}}{b-a+\sqrt{b^2-a^2}} + \frac{1}{2} \ln \frac{(-b+a+\sqrt{b^2-a^2})^2 + 4d^2}{(b-a+\sqrt{b^2-a^2})^2 + 4d^2} \right]
\]

From Fig. 3 we obtain

\(a = 0.025 \) ft.
\(b = 0.0375 \) ft.
\(d = 0.1625 \) ft.

and \(\Gamma \) has been computed to be

\(\Gamma = 1.41 \) ft.2/sec.

thus

\(D_v = 8.81 \times 10^{-4} \) lbs.

The experiments were conducted at a Reynolds number of about \(1.24 \times 10^6 \).

From the ITTC correlation formula, the corresponding value of the surface-drag coefficient is
\[C_s = \frac{0.075}{(\log_{10} R - 2)^2} = 4.48 \times 10^{-3} \]

and since the surface of the half double-model, representing the wetted area of the corresponding ship model, is \(A = 2.82 \text{ ft}^2 \), the surface drag is

\[D_s = C_s A \frac{\rho u^2}{2} = 3.82 \times 10^{-2} \text{ lbs.} \]

then

\[\frac{D_v}{D_s} = 0.023 \]

The vortical drag represents approximately 2 percent of the surface drag of the Series-60 model.

2) Flow Pattern in Bow Region

The velocity components \(u, v, w \), have been measured at numerous points in the vicinity of the model in the bow region. The measurements have been limited to an eighth of the body length from the bow. The origin of the system of coordinates has been chosen as the intersection of the bow with the free surface, the \(x \)-axis coincides with the longitudinal axis of the model in the direction of the mean flow, the \(z \)-axis is vertical upward, and the \(y \)-axis completes this right-handed system of coordinates. Since the differential equation of a streamline is given by

\[\frac{dx}{u} = \frac{dy}{v} = \frac{dz}{w} = \text{constant} = k \]

a set of streamlines could be determined from the flow chart outlined on page 6. The results of the computations are shown on Fig. 4, where the coordinates have been made dimensionless with respect to the beam of the ship, as the projections of the streamlines on the \(x-z \) and \(x-v \) planes. A three-dimensional figure drawn in perspective would have been easier to read, but the artistic talent of the writer has proven to be insufficient for such a task. However, by following concurrently the two projections
of each streamline, one can see that the streamlines both follow a downward trend and pass underneath the model while staying at approximately a constant distance from the hull; furthermore at the downstream edge of the domain of measurements the component v of the velocity changes sign. This shows that the flow follows a spiral motion which, already begun at the bow, then develops into vortices. This spiral motion increases in strength all along the ship model up the stern. Once the vortex has left the body it will eventually damp out through viscous effects.

Since, as we see here, the spiral motion begins at the bow, the shape of which might therefore affect the original stages of the vortex formation, it is suggested that a study similar to the present one be performed on a Series-60 model equipped with a bulbous bow, to investigate if the spiral motion is hampered or not by such a shape.
Flow Chart for the Determination of the Streamlines in the Bow Region

START

Initial point X_0, Y_0, Z_0
Initial velocity u_0, v_0, w_0

Determine next point
$X_n = X_0 + k u_0$
$Y_n = Y_0 + k v_0$
$Z_n = Z_0 + k w_0$

Is new point outside of domain of measurements?

no

Determine the velocity components at new point (u_n, v_n, w_n) by interpolation within the values measured at neighboring points.

Write X_n, Y_n, Z_n

STOP

yes

Write X_n, Y_n, Z_n

u_n, v_n, w_n

Transfer new values into initial values
$x_n = x_0$
$y_n = y_0$
$z_n = z_0$
$u_n = u_0$
$v_n = v_0$
$w_n = w_0$
Conclusions

The present study indicates that, at a Reynolds number equal to 1.24×10^6, the drag induced by the generation of vortices along the bilges is of the order of 2 percent of the surface drag for a Series-60 ship-model.

The spiral motion which develops into these bilge vortices begins already at the bow as can be seen in Fig. 4. This spiral motion at first follows the hull of the ship; when the flow lines depart from the hull, vortices are formed, as shown in Fig. 3. Since this motion originates at the bow, it will be affected by the shape of the bow. It is therefore suggested that the study be pursued by performing a similar series of experiments on a Series-60 ship model equipped with a bulbous bow.

References

Detail of the Five-Hole Probe

Fig. 1. Photograph of the Series-60 Double Model Installed in Wind Tunnel
Fig. 2a. Operating Principle of the five-hole Probe
Fig. 2b. Calibration Curve of the five-hole Probe
Fig. 4. Flow Pattern in the Bow Region of the Series-60 Model, as Shown by a Set of Streamlines
NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER

DISTRIBUTION LIST

(November 1969)

40 Commander
Naval Ship Research and Development Center
Washington, D.C. 20007
Attn: Code L41 (39)
Attn: Code 513 (1)

2 Commanding Officer
Naval Ship Research and Development Laboratory
Annapolis, Maryland 21402
Attn: Library

2 Commanding Officer
Naval Ship Research and Development Laboratory
Panama City, Florida 32402
Attn: Library

5 Commander
Naval Ship Systems Command
Department of the Navy
Washington, D.C. 20360
Attn: Code 2052 (3)
 Code PM5 81 (1) ABCDF
 Code 03412 (1)

20 Director
Defense Documentation Center
5010 Duke Street
Alexandria, Virginia 22314

1 Chief of Naval Research
Department of the Navy
Washington, D.C. 20360
Attn: Mr. Ralph D. Cooper
 Code 438

1 Director
Office of Naval Research
Branch Office
495 Summer Street
Boston, Massachusetts 02210

1 Director
Office of Naval Research
Branch Office
219 S. Dearborn Street
Chicago, Illinois 60604

1 Office of Naval Research
Resident Representative
207 West 24th Street
New York, New York 10011

1 Chief Scientist
Office of Naval Research
Branch Office
1030 East Green Street
Pasadena, California 91101

1 Director
Office of Naval Research
Branch Office
50 Fell Street
San Francisco, California 94102

3 Director
Naval Research Laboratory
Washington, D.C. 20390
Attn: Library, Code 2029 (ONRL)

1 Commander
Naval Facilities Engineering Command
Department of the Navy
Washington, D.C. 20390
Attn: Code 0321 BCDE

5 Commander
Naval Ship Engineering Center
Department of the Navy
Center Building, Prince Georges Center
Hyattsville, Maryland 20782
Attn: Code 6110
 Code 6114D
 Code 6120 AC
 Code 6132 CDE
 Code 6136
1. Strategic Systems Projects Office
 Department of the Navy
 Washington, D.C. 20360
 Attn: Dr. John Craven (NSP-001)

1. Commanding Officer
 Naval Air Development Center
 Johnsville, Warminster, Pa. 18974
 Attn: Technical Library

1. Commanding Officer and Director
 Naval Applied Science Laboratory
 Flushing & Washington Avenues
 Brooklyn, New York 11251

1. Director (Code 2027)
 Naval Research Laboratory
 Washington, D.C. 20390

1. Commanding Officer
 Navy Underwater Weapons Research
 and Engineering Station
 Newport, Rhode Island 02840

1. Commander
 Naval Oceanographic Office (Library)
 Department of the Navy
 Washington, D.C. 20390 BEF

1. Commander
 Naval Proving Ground
 Dahlgren, Virginia 22448
 Attn: Technical Library BDE

1. Commander
 Naval Weapons Center (Code 753)
 China Lake, California 93555

1. Commander
 Boston Naval Shipyard
 Boston, Massachusetts 02129
 Attn: Technical Library

1. Commander
 Charleston Naval Shipyard
 Naval Base
 Charleston, South Carolina
 Attn: Technical Library

1. Commander
 Long Beach Naval Shipyard
 Long Beach, California 90802
 Attn: Technical Library

1. Commander
 Norfolk Naval Shipyard
 Portsmouth, Virginia 23709
 Attn: Technical Library

1. Commander
 Pearl Harbor Naval Shipyard
 Box 400, Fleet Post Office
 San Francisco, California 96610
 Attn: Code 246-P

1. Commander
 Philadelphia Naval Shipyard
 Philadelphia, Pennsylvania 19112
 Attn: Code 240 ABCF

1. Commander
 Portsmouth Naval Shipyard
 Portsmouth, N.H. 03801
 Attn: Technical Library

1. Commander
 Puget Sound Naval Shipyard
 Bremerton, Washington 98314
 Attn: Engineering Library

3. Commander
 San Francisco Bay Naval Shipyard
 Vallejo, California 94592
 Attn: Technical Library (1)
 Code 250 (1)
 Code 130L1 (1) BDF

1. AFDL (FDSS - Mr. J. Olsen)
 Wright-Patterson AFB
 Dayton, Ohio 45433 BDE

1. NASA Scientific and Technical
 Information Facility
 P. O. Box 33
 College Park, Maryland 20740

1. AFORSR (SREM)
 1400 Wilson Blvd.
 Arlington, Virginia 22209

1. Library of Congress
 Science & Technology Division
 Washington, D.C. 20540

1. U.S. Coast Guard
 1300 E. Street N.W.
 Washington, D.C. 20591
 Attn: Division of Merchant Marine Society
1 Director
Waterways Experiment Station
Box 631
Vicksburg, Mississippi 39180
Attn: Research Center Library BDE

1 Commandant (E)
U. S. Coast Guard (Sta. 5-2)
1300 E. Street N.W.
Washington, D. C. 20591

1 University of Bridgeport
Bridgeport, Connecticut 06602
Attn: Prof. Earl Uram
Mech. Engr. Dept. ABDE

4 Naval Architecture Department
College of Engineering
University of California
Berkeley, California 94720
Attn: Librarian (1)
Prof. J. R. Paulling (1)
Prof. J. V. Wehausen (1)
Dr. H. A. Schade (1)

3 California Institute of Technology
Pasadena, California 91109
Attn: Dr. A. J. Acosta (1) ABDE
Dr. T. Y. Wu (1)
Dr. M. S. Plesset (1) BDE

1 Cornell University
Graduate School of Aerospace Engr.
Ithaca, New York 14850
Attn: Prof. W. R. Sears

1 The University of Iowa
Iowa City, Iowa 52240
Attn: Dr. Hunter Rouse

2 The University of Iowa
Iowa Institute of Hydraulic Research
Iowa City, Iowa 52240
Attn: Dr. L. Landweber (1)
Dr. J. Kennedy (1)

1 Long Island University
Graduate Department of Marine Science
40 Merrick Avenue
East Meadow, New York 11554
Attn: Prof. David Price

4 Massachusetts Institute of Technology
Department of Naval Architecture and
Marine Engineering
Cambridge, Massachusetts 02139
Attn: Dr. A. H. Keil (1)
Prof. J. R. Kerwin (1)
Prof. M. A. Abkowitz (1) ABCD
Dr. J. N. Newman (1) ACD

1 U. S. Merchant Marine Academy
Kings Point, L.I., New York 11024
Attn: Capt. L. S. McCready, Head
Dept. of Engineering AB

3 University of Michigan
Department of Naval Architecture
and Marine Engineering
Ann Arbor, Michigan 48104
Attn: Dr. T. F. Ogilvie (1)
Prof. H. Benford (1)
Dr. F. C. Michelsen (1)

1 Aerojet-General Corporation
1100 W. Hollyvale Street
Azusa, California 91702
Attn: Mr. J. Levy
Bldg. 160, Dept. 4223

1 Bethlehem Steel Corporation
Central Technical Division
Sparrows Point Yard
Sparrows Point, Maryland 21219
Attn: Mr. A. Haff, Technical Mgr.

1 Bethlehem Steel Corporation ABC
Attn: H. de Luce, 25 Broadway
New York, New York 10004

1 Cornell Aeronautical Laboratory
Applied Mechanics Department
P. O. Box 235
Buffalo, New York 14221
Attn: Dr. I. Statler

1 Electric Boat Division
General Dynamics Corporation
Groton, Connecticut 06340
Attn: Mr. V. Boatwright, Jr.

1 Esso International
15 West 51st Street
New York, New York 10019
Attn: Mr. R. J. Taylor, Manager
R. & D. Tanker Department
 University of Minnesota
 Mississippi River at 3rd Avenue, S.E.
 Minneapolis, Minnesota 55414
 Attn: Director (1)
 Dr. C. S. Song (1)
 Mr. J. M. Killen (1) BDEF

1. U. S. Naval Academy
 Annapolis, Maryland 21402
 Attn: Library

1. U. S. Naval Postgraduate School
 Monterey, California 93940
 Attn: Library

1. New York University
 University Heights
 Bronx, New York 10453
 Attn: Prof. W. J. Pierson, Jr.

2. University of Notre Dame
 Notre Dame, Indiana 46556
 Attn: Dr. A. Strandhagen (1) BDE
 Dr. J. Nicolaides (1) BD

2. The Pennsylvania State University
 Ordnance Research Laboratory
 University Park, Pennsylvania 16801
 Attn: Director (1) ABDE
 Dr. G. Wislicenus (1) ABDEF

1. Colorado State University
 Department of Civil Engineering
 Fort Collins, Colorado 80521
 Attn: Prof. M. Albertson BDEF

2. Scripps Institution of Oceanography
 University of California
 La Jolla, California 92038
 Attn: J. Pollack (1)
 M. Silverman (1) ABCF

3. Stevens Institute of Technology
 Davidson Laboratory
 711 Hudson Street
 Hoboken, New Jersey 07030
 Attn: Dr. J. Breslin (3)

1. University of Texas
 Defense Research Laboratory
 P. O. Box 8029
 Austin, Texas 78712
 Attn: Director DF

2. Webb Institute of Naval Architecture
 Crescent Beach Road
 Glen Cove, L.I., New York 11542
 Attn: Prof. E.V. Lewis (1)
 Prof. L. W. Ward (1)

1. Gibbs & Cox, Inc.
 21 West Street
 New York, New York 10006
 Attn: Technical Library

1. Grumman Aircraft Engineering Corp.
 Bethpage, L.I., New York 11714
 Attn: Mr. W. Carl

2. Hydronautics, Inc.
 Pindell School Road
 Howard County
 Laurel, Maryland 20801
 Attn: Mr. P. Eisenberg (1)
 Mr. M. Tulin (1)

1. Newport News Shipbuilding and
 Dry Dock Company
 4101 Washington Avenue
 Newport News, Virginia 23607
 Attn: Technical Library Dept.
 Oceanics, Incorporated
 Technical Industrial Park
 Plainview, L.I., New York 11803
 Attn: Dr. Paul Kaplan
 Robert Taggart, Inc.
 3930 Walnut Street
 Fairfax, Virginia 22030
 Attn: Mr. R. Taggart

1. Sperry-Piedmont Company
 Charlottesville, Virginia 22901
 Attn: Mr. T. Noble

 Sperry-Gyroscope Company
 Great Neck, L.I., New York 11020
 Attn: Mr. D. Shapiro (Mail Sta. G2)

1. Society of Naval Architects and
 Marine Engineers
 74 Trinity Place
 New York, New York 10006
2 Southwest Research Institute
8500 Culebra Road BCDEF
San Antonio, Texas 78206
Attn: Dr. H. Abramson (1)
 Applied Mechanics Review (1)

1 Sun Shipbuilding & Dry Dock Co.
Chester, Pennsylvania 18013
Attn: Mr. F. Pavlik
 Chief Naval Architect

1 Tracor Incorporated
6500 Tracor Lane BDF
Austin, Texas 78721

1 TRG/A Division of Control Data Corp.
535 Broad Hollow Road (Tr. 110)
Melville, L.I., New York 11746

1 Woods Hole Oceanographic Institute
Woods Hole, Massachusetts 02543
Attn: Reference Room ABCDF

1 Prof. Jerome Lurye
Department of Mathematics
St. John's University
Jamaica, New York 11432

1 Mr. B. H. Ujihara
North American Aviation Inc.
Space and Information Systems Div.
12214 Lakewood Boulevard
Downey, California 90241

1 Stanford Research Institute
Menlo Park, California 94025
Attn: Library

1 Cambridge Acoustical Associates, Inc.
129 Mount Auburn Street
Cambridge, Massachusetts 02139
Attn. Dr. M. C. Junger ABDF

1 Dr. Roland W. Jeppson
College of Engineering BDE
Utah State University
Logan, Utah 84321
BILGE VORTICES ALONG A SERIES-60 MODEL

Technical Report

Jean-Claude Tatinaux

July 1969

Contract or Grant No.

Monr 1611(05)

Project No.

SR 009 01 01

This document has been approved for public release and sale, its distribution is unlimited.

Naval Ship Research and Development Center, Washington, D. C. 20007

By measuring the velocity components by means of a Five-hole directional probe, the secondary flow in the transverse plane at the stern of a Series-60 double model has been investigated and show the presence of a vortex. The drag induced by the bilge vortices is estimated to be equal to about two percent of the surface drag. The streamlines in the bow region are determined and permit to conclude that the spiral motion which eventually develops into vortices already begins at the bow. It is suggested that the influence of the shape of the bow on the flow pattern in the bow region be further investigated.
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ROLE</td>
<td>WT</td>
<td>ROLE</td>
</tr>
<tr>
<td>Bilge Vortices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vortical drag</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Five-hole directional probe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Streamlines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bow region</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>