Introduction to the Bedrock Geology of Nora Springs 7.5' Quadrangle, Cerro Gordo County, Iowa

The Nora Springs 7.5’ Quadrangle, Cerro Gordo County, Iowa, lies in the central region of the state, covering an area of approximately 132 square miles. The map presents an overview of the bedrock geology, showing the distribution and contact relationships of major geologic units. The scale of the map is 1:24,000, and it includes a geologic cross-section that illustrates the stratigraphic relationships and structural features within the mapping area.

The Nora Springs quad lies in the Iowan Surface landform region, which was modified by the Laurentide Ice Sheet during the last glacial cycle. The bedrock geology is characterized by a series of sedimentary rocks that have been deformed and uplifted by tectonic activity. The oldest units in the sequence are typically the most weathered and erosion-resistant, while younger units are more resistant to weathering and erosion.

The map is produced in cooperation with the Iowa Geological Survey, the Iowa Geological and Water Survey, and the Iowa Department of Transportation. The project is part of the Cooperative Geologic Mapping Program, under USGS award 1401-00-0189. The program is supported by the U.S. Department of the Interior, the U.S. Geological Survey, and the Iowa Geological Survey.

Special thanks to Iowa Geological Survey Cooperative Geologic Mapping Program, under USGS award 1401-00-0189 for allowing us the use of this geologic map. Images are from Iowa DOT Road map and Iowa Lidar Project 2007-2011. Base map from Iowa DOT Road map Layers 2006. Shaded relief from Iowa Lidar Project 2007-2011.

The study area is covered by a series of geologic and water survey open file maps, with special thanks to Surine, S., and Giglierano, J., 2011a and 2011b for allowing us the use of these maps. The Nora Springs quad lies in the Iowan Surface landform region, which was modified by the Laurentide Ice Sheet during the last glacial cycle. The bedrock geology is characterized by a series of sedimentary rocks that have been deformed and uplifted by tectonic activity. The oldest units in the sequence are typically the most weathered and erosion-resistant, while younger units are more resistant to weathering and erosion.

The Nora Springs quad lies in the Iowan Surface landform region, which was modified by the Laurentide Ice Sheet during the last glacial cycle. The bedrock geology is characterized by a series of sedimentary rocks that have been deformed and uplifted by tectonic activity. The oldest units in the sequence are typically the most weathered and erosion-resistant, while younger units are more resistant to weathering and erosion.

The Nora Springs quad lies in the Iowan Surface landform region, which was modified by the Laurentide Ice Sheet during the last glacial cycle. The bedrock geology is characterized by a series of sedimentary rocks that have been deformed and uplifted by tectonic activity. The oldest units in the sequence are typically the most weathered and erosion-resistant, while younger units are more resistant to weathering and erosion.

The Nora Springs quad lies in the Iowan Surface landform region, which was modified by the Laurentide Ice Sheet during the last glacial cycle. The bedrock geology is characterized by a series of sedimentary rocks that have been deformed and uplifted by tectonic activity. The oldest units in the sequence are typically the most weathered and erosion-resistant, while younger units are more resistant to weathering and erosion.

The Nora Springs quad lies in the Iowan Surface landform region, which was modified by the Laurentide Ice Sheet during the last glacial cycle. The bedrock geology is characterized by a series of sedimentary rocks that have been deformed and uplifted by tectonic activity. The oldest units in the sequence are typically the most weathered and erosion-resistant, while younger units are more resistant to weathering and erosion.

The Nora Springs quad lies in the Iowan Surface landform region, which was modified by the Laurentide Ice Sheet during the last glacial cycle. The bedrock geology is characterized by a series of sedimentary rocks that have been deformed and uplifted by tectonic activity. The oldest units in the sequence are typically the most weathered and erosion-resistant, while younger units are more resistant to weathering and erosion.

The Nora Springs quad lies in the Iowan Surface landform region, which was modified by the Laurentide Ice Sheet during the last glacial cycle. The bedrock geology is characterized by a series of sedimentary rocks that have been deformed and uplifted by tectonic activity. The oldest units in the sequence are typically the most weathered and erosion-resistant, while younger units are more resistant to weathering and erosion.

The Nora Springs quad lies in the Iowan Surface landform region, which was modified by the Laurentide Ice Sheet during the last glacial cycle. The bedrock geology is characterized by a series of sedimentary rocks that have been deformed and uplifted by tectonic activity. The oldest units in the sequence are typically the most weathered and erosion-resistant, while younger units are more resistant to weathering and erosion.