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ABSTRACT 

Studies in Iowa have long documented the vulnerability of wells with less than 50 feet 

(15 meters) of confining materials above the source aquifer to contamination from 

nitrate and various pesticides.  Recent studies in Wisconsin have documented the 

occurrence of viruses in untreated groundwater, even in wells considered to have little 

vulnerability to contamination from near-surface activities.  In addition, sensitive 

methods have become available for analyses of pharmaceuticals and pesticides.  This 

study represents the first comprehensive examination of contaminants of emerging 

concern in Iowa’s groundwater conducted to date, and one of the first conducted in the 

United States. 
 

Raw groundwater samples were collected from 66 public supply wells during the 

spring of 2013, when the state was recovering from drought conditions.  Samples were 

analyzed for 206 chemical and biological parameters; including 20 general water-quality 

parameters and major ions, 19 metals, 5 nutrients, 10 virus groups, 3 species of 

pathogenic bacteria, 5 microbial indicators, 108 pharmaceuticals, 35 pesticides and 

pesticide degradates, and tritium. The wells chosen for this study represent a diverse 

range of ages, depths, confining material thicknesses, pumping rates, and land use 

settings.   
 

The most commonly detected contaminant group was pesticide compounds, which 

were present in 41% of the samples.  As many as 6 pesticide compounds were found 

together in a sample, most of which were chloroacetanilide degradates.  While none of 

the measured concentrations of pesticide compounds exceeded current benchmark 

levels, several of these compounds are listed on the U.S. Environmental Protection 

Agency’s Contaminant Candidate List and could be subject to drinking water standards 

in the future.  Despite heavy use in the past decade, glyphosate was not detected, and 

its metabolite, aminomethylphosphonic acid, was only detected in two of 60 wells 

tested (3%) at the detection limit of 0.02 μg/L.   
 

Pharmaceutical compounds were detected in 35% of 63 samples.  Of the 14 

pharmaceuticals detected, six had reported concentrations above the method reporting 

limit, with the maximum reported concentration of 826 ng/L for acetaminophen.  

Diphenhydramine was the only pharmaceutical to have two detections above the 

reporting limit, at 24.5 and 145 ng/L.  Eight pharmaceuticals had confirmed detections 

at concentrations below the method reporting limit.  Caffeine was the most frequently 

detected pharmaceutical compound (25%), followed by the caffeine metabolite, 1,7-

dimethylxanthine (16%).  
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Microorganisms were detected in 21% of the wells using quantitative polymerase chain 

reaction methodologies. The most frequently detected microorganism was the pepper 

mild mottle virus (PMMV), a plant pathogen found in human waste.  PMMV was 

detected in 17% of samples at concentrations ranging from 0.4 to 6.38 gene copies per 

liter.  GII norovirus, human polyomavirus, bovine polyomavirus, and Campylobacter 

were also detected, while adenovirus, enterovirus, GI norovirus, swine hepatitis E, 

Salmonella, and enterohemmorhagic E. coli were not detected.  No correlations were 

found between viruses or pathogenic bacteria and microbial indicators.   

 

Wells with less than 50 feet (15 meters) of confining material were shown to have 

greater incidence of surface-related contaminants; however, significant relationships 

(p<0.05) between confining layer thickness and contaminants were only found for 

nitrate and herbicides.  

INTRODUCTION 

Groundwater supplies drinking water to about 80% of Iowa’s 3 million people, with 

over 2 million of these people obtaining their drinking water from public water supplies 

(PWS).  Such PWS are required by the United States Environmental Protection Agency 

(US EPA) to monitor finished water for a variety of chemical, physical, and biological 

contaminants to protect public health.  The remaining 300,000 Iowans rely on 

groundwater for their drinking water obtained from unregulated private wells.   

 

Pharmaceuticals, viruses, and other contaminants of emerging concern (CECs), which 

are largely unregulated, are of increasing public interest. CECs have commonly been 

found in aquatic systems (e.g., Kolpin et al., 2002, 2004), including groundwater (Barnes 

et al., 2008; Erickson et al., 2014; Schaider et al., 2014).  There is mounting evidence that 

exposures to select CECs can affect aquatic and terrestrial organisms (Brodin et al., 2013; 

Jonsson et al., 2014; Oaks et al., 2004; Rosi-Marshall et al., 2013).  Potential effects to 

human health have not yet been widely identified (Bruce et al., 2010); however, health-

based benchmark values have been assessed for some pesticides and pharmaceuticals 

(Minnesota Department of Health, 2013; Toccalino et al., 2012; US EPA, 2014b).  

Increased risk of acute gastrointestinal illness has been associated with viruses found in 

non-disinfected municipal drinking water (Borchardt et al., 2012). 

 

In addition to the primary and secondary drinking-water contaminants that PWS are 

required to monitor under the Safe Drinking Water Act, the US EPA continues to 

evaluate potential contaminants on their “Contaminant Candidate List” (CCL) to 

determine appropriate standards (US EPA, 2013a). Contaminants needing further 

assessment are listed under the Unregulated Contaminant Monitoring Rule 3 (UCMR 



 

3 

 

3), which requires additional monitoring from a subset of PWS for a combination of 

metals, volatile organic compounds, hormones, viruses, and perfluorinated compounds 

(US EPA, 2013b).  This is the first time the UCMR list included CECs.  The CCL was last 

updated in 2010, and is scheduled to be updated every six years.  These lists will likely 

be revised to include other CECs as new analytical methods become available, detection 

levels improve, and health effects are studied. 

 

In order to determine whether selected CECs, pesticides, and UCMR 3 contaminants 

occur in Iowa’s aquifers prior to treatment, targeted sampling and analysis of raw 

groundwater from a strategically selected population of 66 PWS wells was conducted in 

2013.  A total of 206 unique parameters were measured, including 108 pharmaceutical 

compounds, 35 pesticide compounds, 19 metals, 5 microbial indicators, 3 bacterial 

pathogens, and 10 groups of viruses. Concurrent analysis of this untreated groundwater 

for 20 general water-quality parameters and major ions, 5 nutrients, and tritium 

provided context for the potential occurrence of CECs.  The sampling network 

represented all major aquifers in Iowa and a broad set of well characteristics. This study 

represents the first comprehensive examination of CECs in Iowa’s groundwater 

conducted to date, and one of the first conducted in the United States. This project will 

provide further understanding of CECs in groundwater, help assess future safe 

drinking water program needs, guide source water protection activities for both public 

and domestic wells, help evaluate choice of fecal indicators for the Groundwater Rule in 

Iowa, and serve as a foundation for future epidemiological studies. 

Previous Statewide Groundwater-Quality Monitoring 

A number of past studies have assessed groundwater quality in Iowa on a state-wide 

basis, and provided important background information for this study, including the 

following: 
 

 Iowa Groundwater Monitoring (IGWM) Network. Beginning in 1982, the Iowa 

Geological Survey, U.S. Geological Survey (USGS), and State Hygienic Lab (SHL) 

collaborated to collect and analyze raw groundwater from public wells. In the 

1980s, as it became evident that agricultural practices were affecting groundwater 

quality, a formal monitoring scheme was developed, and wells in the network 

tapping vulnerable aquifers were sampled for agricultural chemicals and other 

surface-related contaminants.  Data from the IGWM network have documented 

the occurrence of herbicides and their metabolites in public wells (Detroy et al., 

1988; Kolpin et al., 1997a), allowed for analysis of trends in agrichemical 

occurrence (Kolpin et al., 1997b), and provided a description of the occurrence and 

distribution of ammonia-nitrogen (Schilling, 2002) and arsenic (Libra, 2011). 
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Budgetary constraints resulted in the program stopping annual monitoring in 2006 

but the network was sampled again in 2012. 
 

 Synthetic Organic Compound (SOC) Sampling Survey of Public Water Supplies. During 

1984-85, 128 public wells were sampled for a variety of SOCs. Seventy of these 

wells were also sampled for commonly-used pesticides. Forty-five percent of the 

wells contained one or more SOC (Kelley, 1985).  
 

 The State-Wide Rural Well Water Survey (SWRL). SWRL was a statistically designed, 

population-based sampling of private wells in Iowa, designed to assess the 

exposure to nitrates, bacteria, and commonly-used herbicides (Kross et al., 1990). 

SWRL sampled 686 wells during 1988-89, in all counties of the state.  
 

 Iowa Community Private Well Study.  While SWRL focused on private wells in 

unincorporated areas, this 2002 study sampled private wells in communities 

without a public water supply. The study included a random sampling of wells 

and a component focused on communities with multiple potential contaminant 

sources. The results of the study indicated these private “in-town” wells exhibit 

generally similar levels of contamination as rural private wells (Iowa DNR, 2004).  
 

 The Iowa Statewide Rural Well Water Survey Phase 2 (SWRL2). SWRL2 sampled 473 

private wells in Iowa, located in 89 of the state’s 99 counties. The wells included 

116 wells sampled in the original SWRL study (Kross et al., 1990), with the 

remainder being mainly wells drilled since SWRL. The contaminants analyzed for 

this study included nitrate, total coliform bacteria, arsenic, atrazine, and 

herbicides, including chloroacetanilide degradates (CHEEC, 2009).  
 

In addition to these specific projects, raw, public well groundwater has been sampled 

for a variety of purposes since early in the 20th century by both state and federal 

agencies, including the Iowa DNR and precursor agencies, the SHL, USGS, and the 

Iowa Department of Public Health. These wells have been linked, when possible, to 

well logs and construction records, and those with sufficient documentation have been 

chosen for a variety of groundwater monitoring studies that have primarily taken place 

since the 1980s.  
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Groundwater Vulnerability in Iowa 

Investigations into the occurrence of nonpoint source agricultural chemicals in Iowa 

groundwater during the early 1980s led to the development and testing of a 

groundwater vulnerability scheme (Hallberg et al., 1983; Hallberg et al., 1984; Libra et 

al., 1984). This classification provides a general mappable description of the geologic 

settings where mobile contaminants may reach aquifers. This concept was adapted to 

produce a groundwater vulnerability map for the state (Hoyer and Hallberg, 1991) and 

continues to be refined.  This classification scheme, shown in Figure 1, guides 

groundwater-quality monitoring priorities, such as those described above, as well as 

groundwater and source-water protection activities (Iowa DNR, 2011).  

Areas where aquifers are overlain by less than 50 feet (15 meters) of slowly permeable 

confining beds (typically clayey glacial till or shale bedrock) are vulnerable to 

contamination, and their groundwater commonly contains mobile contaminants such as 

nitrate.  Shallow bedrock aquifers are most common in the eastern half of the state, 

while alluvial aquifers occur in river valleys statewide.  In northeast Iowa, karst areas 

with sinkholes and losing streams occur in some shallow bedrock settings and add to 

 

 

Figure 1. Diagram of the groundwater vulnerability classification used in Iowa (Iowa DNR, 2011). 
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the overall vulnerability of the underlying groundwater.  In contrast, areas where 

aquifers are covered by more than 50 feet (15 meters) of confining bed material have a 

significant degree of natural protection from surficial contamination. Contamination 

can reach these relatively protected aquifers via direct conduits such as abandoned or 

inadequately constructed wells, or preferential flow pathways such as fractures, but the 

geologic setting generally limits contaminant inputs from the surface. 

 

This vulnerability classification was largely derived using nitrate results from private 

wells. When applied to public wells, several factors alter this approach. First, public 

wells typically pump significantly larger quantities of water than private wells, 

resulting in steep downward gradients and the potential to move contaminants to 

greater depth if pathways exist. Second, these drawdowns result in larger capture zones 

for pubic wells, relative to private wells. This increases the potential variability in the 

confining bed thickness across the capture zone, and the potential for windows of less 

protected aquifer within the zone. Existing geologic data may be inadequate in terms of 

density to map this variability. Given this uncertainty and much higher pumping rates 

(often for many decades) the application of the vulnerability concept to public wells errs 

on the conservative side, and requires a greater confining bed thickness to be 

considered naturally protected (Iowa DNR, 2011). For this study, wells with less than 50 

feet (15 meters) of confining bed thickness were classified as “high vulnerability” wells, 

wells between 50 – 100 feet (15-30 meters) of confining materials were classified as 

“intermediate vulnerability,” and wells with greater than 100 feet (>30 meters) of 

confining material were classified as having “low vulnerability.” 

Background for Selected Analytes 

For this study, a comprehensive analysis of the water samples was conducted, with a 

total of 206 water quality parameters measured, including tritium, 20 general water-

quality parameters and major ions, 5 nutrients, 19 metals, 5 microbial indicators, 35 

pesticide compounds, 108 pharmaceutical compounds, 10 viruses, and 3 bacterial 

pathogens.  The measurements of commonly assessed water constituents were included 

to provide context and to evaluate their value as predictors of CECs occurrence. 

 

Twenty-eight contaminants analyzed for this study are currently regulated by the Safe 

Drinking Water Act.  It should be noted; however, that the standards for drinking water 

only apply to finished water.  In addition, multiple treatment methods are used in Iowa 

and many systems blend water from multiple wells and/or surface sources. Therefore, 

conclusions about the quality of finished drinking water cannot be drawn from this 

study of raw groundwater sampling.  
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Tritium 

To complement vulnerability rankings, knowledge of the relative age of groundwater 

can help determine whether groundwaters are vulnerable to surface-related 

contamination.  Groundwater recharged in the past 50 years is more likely to contain 

contaminants associated with wastewater and agricultural activities.  Tritium (3H) is a 

radioactive isotope of hydrogen, naturally formed by the interaction of incoming cosmic 

rays with the upper atmosphere.  Human nuclear activities add to the concentrations of 

tritium in the atmosphere and hydrologic cycle. In particular, atmospheric testing of 

nuclear weapons during the 1950s and 1960s resulted in precipitation containing several 

thousand tritium units (TU) in the upper Midwest, whereas natural processes 

previously are estimated to have resulted in concentrations around 10 TU (Michel, 

2004).  Tritium has a half-life of approximately 12.4 years; therefore, the concentration of 

tritium in the atmosphere continues to decline, but it remains a useful indicator of 

recent groundwater recharge. 

General Water-Quality, Major Ions, and Nutrients 

Among the groundwater constituents examined for this study were a number of 

commonly measured parameters that provide insights into the groundwater’s history, 

and were relevant to predicting the probability of the occurrence of surface-derived 

contaminants.  Some of these parameters are also useful for distinguishing between 

surface-related and naturally derived contamination.  It is possible; however, for there 

to be multiple sources of these constituents.  Additionally, subsurface processes can 

affect these parameters, thus is it best to look at multiple parameters before drawing 

conclusions about potential sources of contamination.  In Iowa for example, nitrate is 

commonly derived from a combination of inorganic fertilizer application, 

mineralization/nitrification of soil organic matter, human and animal waste, legume 

fixation, and atmospheric deposition (Schilling and Wolter, 2008).  Because nitrate is 

regulated for drinking-water use (US EPA, 2013c), it is widely monitored in 

groundwater.  However, one drawback to using nitrate as a tracer of surface 

contamination is that microbes can transform nitrate to other forms of nitrogen 

(denitrification) under anoxic subsurface conditions when organic matter is present.   

 

Chloride, which can be introduced into groundwater from human and animal waste 

and road salts, can also be used as a tracer of surface activities.  The benefit of using 

chloride as a tracer is that, unlike nitrate, it is not removed by chemical or biological 

processes in the subsurface.  However, chloride is contained in certain rock formations, 

and thus, can be found in some deep protected aquifers.  While some correlation 

between chloride and nitrate are seen in IGWM data, the highest chloride values (1,000 

mg/L or more) occur in samples from deep wells drawing water from Cambrian-

Ordovician bedrock aquifers (IDNR, 2013).  
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Dissolved oxygen (DO) is derived from the atmosphere and higher concentrations are 

generally indicative of shorter duration flow paths and relatively recent recharge.  The 

presence of DO affects many natural and anthropogenic contaminants (Stumm and 

Morgan, 1981).  Water containing greater than 0.5 mg/L DO is defined as oxic.  As 

groundwater moves, DO reacts with organic matter and reduced mineral species, 

resulting in declining concentrations along its flow path (Rose and Long, 1988); thus, 

DO can provide a general indication of groundwater age.  However, the rate of these 

reactions is a function of the organic carbon and mineral species the groundwater 

encounters, and relatively deep and old groundwater may contain substantial DO 

(Winogrand and Robertson, 1982).   

 

Unlike nitrate, ammonia is a form of nitrogen found in groundwater that is 

predominantly derived from natural sources at some depth in Iowa (Schilling, 2002); 

however, it can also be derived from surface activities and persist in groundwater 

under reducing conditions.   Ammonia concentrations above 1 mg/L are a concern for 

public water supplies, as nitrification of ammonia during treatment processes can 

generate nitrite. Nitrite as nitrogen (N) has a maximum contaminant level (MCL) of 1 

mg/L, and nitrification of more than 1 mg/L ammonia-N may generate nitrite-N 

concentrations above the MCL (US EPA, 2013c).   

 

Total dissolved solids (TDS) is another frequently measured water-quality parameter 

that is often associated with dissolution of aquifer material over time, but it can also 

come from human activities, such as the application of manure on fields, or road salt 

use during the winter.  Common inorganic salts that contribute to TDS concentrations 

in Iowa groundwater include calcium, magnesium, potassium, and sodium (cations), 

bicarbonates, and chlorides and sulfates (anions).    

 

Water-quality monitoring also often includes turbidity, a measure of the cloudiness of 

water. While turbidity does not have direct health effects, it has been associated with 

the presence of disease-causing microorganisms (US EPA, 2014a). Water systems are 

required to remove turbidity, usually by filtration or settling. 

Metals 

Arsenic is a metalloid that can be dissolved into groundwater from minerals in the 

subsurface.  Like ammonia, arsenic is more often found in deep aquifers, protected from 

surface activities (IDNR, 2013).  Most detections of arsenic in Iowa’s groundwater occur 

in the Des Moines Lobe landform region of the state (IDNR, 2013); however, a localized 

hotspot has been documented near Clear Lake in Cerro Gordo County (Schnoebelen 

and Walsh, 2014).  Arsenic is regulated in drinking water because it has been shown to 
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be associated with health effects such as skin damage, problems with circulatory 

systems, and the potential increased risk of cancer (US EPA, 2013c).  The SWRL2 study 

conducted in Iowa found 8% of samples exceeding the MCL for arsenic in drinking-

water of 0.010 mg/L arsenic (CHEEC, 2009).   
 

Chromium, cobalt, strontium, and vanadium are metals listed on the UCMR 3 (US EPA, 

2013b).  These metals may be derived from dissolution of naturally occurring minerals 

or from pipes and industrial processes.  Concerns over exposure to these metals have 

been raised due to potential for reproductive and developmental effects, 

carcinogenicity, and other human health impacts.  For this study, samples were only 

analyzed for dissolved chromium; however, the UCMR 3 requires drinking-water 

systems to be tested for total choromium and hexavalent chromium. 

Pesticides and Pesticide Degradates 

Atrazine is one of the most commonly used herbicides in the US, with annual use of 

over 60 million pounds for the past two decades (USGS, 2013a).  Both atrazine and its 

degradates, desethyl atrazine and deisopropyl atrazine, have been detected in Iowa’s 

groundwater since the 1980s (Detroy et al., 1998; IDNR, 2013; Kolpin et al., 1997a; 1997b; 

CHEEC, 2009).  The MCL established by the US EPA for drinking-water is 3 μg/L for 

long-term exposure, and concentrations below 298 μg/L atrazine are considered safe for 

short-term exposures.  Atrazine was detected in 19.5% of groundwater samples 

collected between 1982 - 1995 in Iowa, with a maximum concentration measured at 21 

μg/L, and less than 1% of the samples exceeding the MCL (Kolpin et al., 1997a).  

Although atrazine was detected in 8% of private wells sampled between 2006 - 2007 in 

Iowa, none of the measured concentrations exceeded the MCL (CHEEC, 2009). 

 

Chloroacetanilide herbicides, including acetochlor, alachlor, and metolachlor, have been 

widely used for pre-emergent control of annual grasses in Iowa and throughout the US, 

primarily for corn production.  Metolachlor use has dropped considerably since the 

1990s, while alachlor use has remained consistent since it replaced acetochlor in 1994 

(USGS, 2013a).  These herbicides, and their ethanesulfonic acid (ESA) and oxanilic acid 

(OXA) degradates, have been documented widely in groundwater in Iowa, with greater 

concentrations and higher detection frequencies in unconfined aquifers with younger 

water, and more frequent detections of degradates than their parent compounds 

(Detroy et al., 1988; IDNR, 2013; Kolpin et al., 1997a; 1997b; CHEEC, 2009).  The primary 

mechanism for degradation of the parent compounds is microbial activity in the soil 

(Potter and Carpenter, 1995), and, in general, the chloroacetanilide degradates are more 

soluble than their parent compounds, increasing their potential for leaching (Thurman 

et al., 1996).  Of these compounds, only alachlor has a drinking water standard 

established by the US EPA of 2 μg/L.  Chloroacetanilides and their degradates that are 
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included on US EPA’s CCL include acetochlor, acetochlor ESA, acetochlor OXA, alachor 

ESA, alachlor OXA, metolachlor, metolachor ESA, and metolachlor OXA. 

 

Glyphosate is a non-selective, broad spectrum herbicide that is the most widely used 

herbicide in the United States having both substantial agricultural and urban uses 

(Baylis, 2000).  Dramatic increases in the agricultural use of glyphosate occurred in 1997 

corresponding to the introduction of genetically altered glyphosate-resistant crops 

through a glyphosate-resistant protein product isolated from a naturally occurring gene 

that was cloned and expressed in the target crops (e.g., Pline et al., 2001). Sales of 

products containing glyphosate in Iowa have increased from 33.6 million dollars in 1997 

to 237.4 million dollars in 2009 (Iowa Department of Agriculture and Land Stewardship, 

2014).  National data indicate a significant increase in use of glyphosate since 1992, 

reaching just under 250 million pounds in 2011 (USGS, 2013a). Dill et al. (2008) 

estimated that 80% of genetically modified crops worldwide are glyphosate resistant. 

Microbial degradation of glyphosate produces aminomethylphosphonic acid (AMPA), 

the primary glyphosate transformation product (Forlani et al., 1999). AMPA is also 

formed by the degradation of phosphonic acids in detergents (Skark et al., 1998).  

Concerns over the development of glyphosate resistance, and problems with control of 

volunteer corn in corn-soybean rotations, has led to incorporation of the herbicide 

glufosinate into weed management regiments (Shaner, 2000). 

 

The high polarity and water solubility of glyphosate, AMPA, and glufosinate make 

their analysis in water samples problematic. Thus, compared to other heavily used 

pesticides (e.g., atrazine), there are relatively few studies on the environmental 

occurrence of glyphosate and AMPA.  In one study, losses of these compounds in 

runoff from crop fields was shown to be smaller than from the herbicides that these 

compounds commonly replace, such as atrazine, metribuzin, and alachlor (Shipitalo et 

al., 2008).  The potential human and ecological impacts of these newer compounds are 

not well understood, although research has suggested a potential link between the 

exposure to glyphosate and human placenta cell damage, especially in the presence of 

adjuvants (Richard et al., 2005).  Recent research has documented the frequent 

occurrence of glyphosate and AMPA in streams and the atmosphere from samples 

collected in Iowa (Battaglin et al., 2005; Chang et al., 2011), and the less frequent 

occurrence of glufosinate (Battaglin et al., 2005). Less is known about such occurrences 

in Iowa groundwater.  No detections of glyphosate or AMPA were observed in 86 Iowa 

PWS wells sampled in 2001 (Kolpin et al., 2004). Glyphosate was detected in 5.8% and 

AMPA in 14.3% of the 1,171 groundwater sampled across 23 U.S. states (Battaglin et al., 

2014). With an additional decade of widespread application of glyphosate across Iowa, 

it was decided a resampling for glyphosate and AMPA in Iowa’s groundwater was an 

important addition to this study, along with the addition of glufosinate analyses.  
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Pharmaceuticals 

The occurrence of pharmaceuticals in the environment has become an increasing public 

concern worldwide.  As used in this report, these compounds include over-the-counter 

and prescription drugs, narcotics, and common stimulants such as caffeine and nicotine.  

Such compounds have been frequently detected in streams (Kolpin et al., 2002), 

groundwater (Barnes et al., 2008), and drinking water sources (Focazio et al., 2008) 

across the United States.  Because conventional treatment is insufficient to completely 

remove pharmaceuticals, these compounds have also been documented in finished 

drinking water (Benotti et al., 2009; Stackelberg et al., 2004).  Pharmaceuticals can be 

introduced into the environment through a variety of pathways including discharge of 

treated wastewater, land application of human and animal waste, septic systems, sewer 

lines, and landfills (Kummerer, 2008). In general, less research on pharmaceutical 

occurrence has been conducted in groundwater compared to surface water (Schaider et 

al., 2014). An intensive groundwater monitoring effort was conducted in California 

(Fram and Belitz, 2011); however, only 14 pharmaceuticals were analyzed.  A recent 

statewide groundwater CEC study in Minnesota analyzed 127 chemicals (Erickson et 

al., 2014). 

Microbial Indicators 

Five microbial indicators were chosen for this study: total coliform bacteria, Escherichia 

coli      (E. coli), enterococci, male-specific coliphages, and somatic coliphages. Total 

coliform bacteria and  E. coli are currently primary drinking water contaminants under 

the Safe Drinking Water Act and are routinely monitored in PWS finished drinking 

water in Iowa. These bacteria are used to indicate whether a sanitary defect exists in the 

water system (total coliform presence) and whether contamination could be from a 

sewage source (E. coli presence), which is an acute health hazard. Another fecal bacteria 

indicator tested in this study was the enterococci group. This group of bacteria is 

thought to persist longer in freshwater environment, especially soils, than fecal coliform 

bacteria (Anderson et al., 2005). 

 

Coliphages are viruses that infect the bacterium, E. coli, and are associated with recent 

fecal contamination.  Because they are viruses and from a sewage source, the fate and 

transport of coliphages are expected to be similar to that of pathogenic viruses; thus, 

coliphages have been suggested as a possible indicator for enteric viral contamination 

(Gerba, 1987).   

 

US EPA’s Groundwater Rule calls for source water monitoring using one or all three of 

the aforementioned fecal indicators: E. coli, enterococci, and coliphage. Because virus 

and pathogenic bacteria sampling and analyses are still very expensive and generally 



 

12 

 

low recovery, this study will evaluate whether any of these indicators will be associated 

with the occurrence of viruses or pathogenic bacteria. 

Viruses and Pathogenic Bacteria 

Viruses can occur in high concentrations (up to 108 copies per liter) in human and 

animal wastewaters (Hamza et al., 2011; Hundesa et al., 2009; Kitajima et al., 2014; 

Wong and Xagoraraki, 2011).  Recent studies have also shown that viruses are not 

completely inactivated by common treatment methods (Gerba et al., 2013) and can 

survive for months to over a year in groundwater (Nevecherya et al., 2005; Charles et 

al., 2009).  In addition, viruses are small enough (10-300 nm) to fit though fine pores, 

compared to larger bacteria (200-5000 nm) and pathogenic protozoans such as 

Cryptosporidium (5,000-7,000 nm).  Enteric viruses have been reported to migrate in the 

subsurface as far as 400 meters (1300 feet) in glacial till and 2.5 kilometers (~1.5 miles) in 

fractured limestone (Keswick and Gerba, 1980).  More recent research in Iowa indicates 

that viruses originating in surface waters can migrate over 1 km through an alluvial 

aquifer to city wells (Davison et al., 2013).  Sampling methods that concentrate viruses 

from large volumes of water onto glass filters (Lambertini et al., 2008) combined with 

the use of quantitative polymerase chain reaction (qPCR) analyses, now make it 

possible to study the occurrence of viruses in groundwater at low concentrations (<10 

copies per liter).   

 

Recent studies have demonstrated relatively widespread occurrence of viruses in 

domestic and municipal wells in the United States (Abbaszadegan et al., 2003; 

Borchardt et al., 2003; Fout et al., 2003; Hunt et al., 2010).  In addition, several studies 

have described the association of virus occurrence in groundwater supplies with 

disease outbreaks, and sporadic and endemic illnesses (Keswick and Gerba, 1980; 

Azadpour-Keeley et al., 2003; Borchardt et al., 2012; Wallender et al., 2013).  

Investigations in Wisconsin, in locales with generally similar geology  to Iowa, 

including aquifers considered protected from surface contamination, have shown the 

common and frequent presence of human enteric viruses in PWS well source water 

commonly and frequently enough to prompt a regulatory response at the state level 

(Borchardt et al. 2003; 2004; 2007; and Bradbury et al.. 2013).  An investigation of virus 

occurrence in groundwater in La Crosse, Wisconsin, implicated leaking sanitary sewer 

lines as a probable source, whereas septic systems, application of human waste, waste 

lagoons, and transport from surface waters have also been indicated as potential 

sources of these virus detections (Hunt et al., 2010; Azadpour-Keeley et al., 2003). Given 

the widespread occurrence of viruses in water supplies, the US EPA has placed four 

virus species on its CCL.    
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This study is unique because of the inclusion of analysis for the pepper mild mottle 

virus (PMMV).  PMMV is a plant virus that occurs at high levels in human wastewater 

and has been shown to be a useful indicator of the presence of other viruses in surface 

waters (Hamza et al., 2011; Kitijama et al., 2014; Rosario et al., 2009).  This is the first 

state-wide survey for PMMV in groundwater.   
 

Enterohemmorhagic E. coli, Salmonella, and Campylobacter jejeuni are bacterial species 

known to cause gastroenteritis and other serious illnesses in humans.  Salmonella and 

Campylobacter are listed on the US EPA’s CCL.  While transport of these bacteria 

through soils, from human and animal wastes, has been documented, transport to all 

but the most vulnerable aquifers should be limited due to the size of these organisms.   

A recent pilot study in the karst-dominated Kewaunee County in Wisconsin showed 

detectable levels of both Salmonella and Campylobacter (Borchardt et al., 2014).  It should 

be noted that the quantitative polymerase chain reaction (qPCR) method used to detect 

these pathogens in groundwater does not differentiate between genetic material from 

living or dead cells. 
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METHODS 

Well Selection 

For this study, a total of 66 public water supply wells were strategically selected for 

sampling. This network represents 2% of the approximately 3,268 active or stand-by 

public wells in Iowa. The sampling network represented all major aquifers in Iowa and 

captured a range of confining layer thickness, construction methods, well ages, 

pumping rates, and dominant land uses in the capture zones.  In addition, this study 

was a test of the long-term groundwater vulnerability classification scheme used in 

Iowa, and represents the first time this scheme has been related to CECs.  Minimum 

selection criteria required that wells were drilled in the last 60 years; had adequate 

location, geologic, and construction information housed within Iowa Department of 

Natural Resource databases; and could be pumped for 4 hours during the sample 

collection process. Most wells had previously been sampled for conventional water 

quality at least once, or were near wells in the same aquifer where such samples had 

been collected.  The selected network of wells sampled for this study is shown in Figure 

2 and well characteristics are summarized in Table 1.  A complete list of wells and 

associated characteristics can be found in Appendix A. 

 

 

 
Figure 2. Map of the public water supply wells sampled for this study by vulnerability class. 
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Table 1. Characteristics of wells used in this study. 

 

Sampling and Analyses 

Samples were collected with cooperation from municipal well operators.  Sampling 

began on March 4, 2013, and was completed by June 18, 2013.  Samples were collected 

by staff from the SHL of Iowa and the USGS following standard collection protocols for 

pharmaceuticals, including the “clean hands/dirty hands” technique, wearing latex 

gloves, and other precautionary measures (USGS, 2006).  In addition, staff attended 

training for virus sampling conducted by Dr. Mark Borchardt.  Specific bottle 

requirements, handling, analytical procedures, and quality assurance/quality control 

procedures for each group of analytes are summarized, below.    

Tritium 

Samples for tritium analysis were collected in 500-milliliter (mL) plastic bottles, sealed 

with plastic wrap, and refrigerated until transported to the laboratory for analysis. 

Tritium concentrations were quantified by the Environmental Isotope Laboratory at the 

University of Waterloo, Ontario, using liquid scintillation counting (LSC) (e.g., Hoffman 

and Stewart, 1966). Tritium concentrations are typically reported as tritium units (TU), 

where a TU equals 1 atom of tritium per 1018 atoms of hydrogen, or 3.2 pCi/L. Direct 

tritium measurements have a detection limit at about 6 TU.  Samples with tritium 

content near this level were enriched 15 times by electrolysis (Taylor, 1977) and then 

counted. The detection limit for enriched samples is 0.8 +/-0.8 TU.  Each batch of 
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samples includes three background samples: water from a well near Newmarket, 

Ontario with no detectable tritium and radiocarbon age dated to >6000 BP, a long term 

monitor (lab deionized water), and a National Institute of Standards and Technology 

(NIST) standard (NIST-4926-E) which has been calibrated with NIST-SRM-4361B-21. 

Repeated analyses were performed within each batch and samples from each batch 

were repeated in a subsequent batch. 

General Water-Quality, Major Ions, Nutrients, and Metals 

Sampling and analysis of general water-quality characteristics, major ions, nutrients, 

and metals were determined according to standard operating procedures based on 

approved US EPA drinking water methods for regulated drinking water analytes (US 

EPA, 2013d) at SHL.  For those parameters/analytes that are not regulated drinking 

water analytes (e.g., total organic carbon), all analyses were also performed according to 

US EPA approved methods.  Analytes and their corresponding quantitation limits and 

method numbers are listed in Table 2.  Four field blanks and five field replicate samples 

were collected and analyzed for these parameters during the course of the investigation. 
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Table 2. Quantitation limits and methods used by the State Hygienic Laboratory to analyze water 

samples for general water-quality parameters, major ions, nutrients, and metals. 

 

Pesticides and Pesticide Degradates 

For the determination of pesticides and chloroacetanilide herbicides and their 

degradates, samples were collected in unpreserved amber glass bottles (1 L) with 

Teflon-lined lids, and stored at < 4° C prior to analysis.  Two bottles were collected; one 

for the analysis for the EPA Method 8270 pesticides and a second bottle was used to test 

for the chloroacetanilides and their degradates.  Samples were shipped on ice packs and 

stored at 4 degrees C until time of sample preparation.  Extraction of samples for the 
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EPA method 8270 pesticides was within seven days of collection and analysis of the 

sample extracts was within 40 days of preparation.  Sample preparation for the 

chloroacetanilides and their degradates was within 14 days of collection and the 

analysis of the extracts was within 28 days of extraction. 

 

All study pesticides with the exception of the chloroacetanilides were measured at SHL 

and determined by EPA Method 8270 (US EPA, 2013e) with reporting limits of 0.1 µg/L 

for all compounds.  Chloroacetanilide herbicides (acetochlor, alachlor, dimethenamid, 

and metolachlor) and their ethanesulfonic- and oxanilic acid-environmental degradates 

were determined according to SHL SOP UHL-H-016 LC/MS/MS which is based on EPA 

Method 535 (US EPA, 2013e). Reporting limits for all the chloroacetanilide compounds , 

including the degradates, were 0.025 µg/L.  Four field blanks and five field replicate 

samples were collected and analyzed for these parameters during the study period. 

 

For the determination of glyphosate, glufosinate, and AMPA, whole water samples 

were collected in a 125-mL baked, amber glass bottle and shipped on ice to the USGS 

Organics Geochemistry Research Laboratory in Lawrence, KS.  Upon receipt at the 

laboratory, samples were filtered through a 0.7-µm pore sized baked glass-fiber filter. 

Samples were separated on a liquid chromatograph using a gradient separation and 

analyzed by liquid chromatography/tandem mass spectrometery (LC/MS/MS) with 

electrospray ionization in negative-ion mode using multiple reaction monitoring 

(MRM) (Meyer et al., 2009). Sample aliquots of 10 mL were derivatized.  A 5-mL aliquot 

of the derivatized sample and 5.5 mL of deionized water are added to the autosampler 

vials, loaded into the cartridge, and placed in the liquid chromatography mobile-phase 

stream using solid-phase extraction. Comparing the retention times to the internal 

standards in each sample and comparing the ratio of the quantitation MRM daughter-

ion to the confirming MRM daughter-ion allows for the identification of the 

compounds. The ratio of the area response produced by the quantitation daughter-ion 

of the analyte to the area response produced by the quantitation daughter-ion of the 

corresponding internal standard calculates the concentration of each identified 

compound.  Two blanks (pesticide grade organic blank water) and four replicate 

samples were collected and analyzed alongside environmental samples in the field for 

quality assurance.  Laboratory quality assurance protocols included duplicates, 

carryover blanks, and check standards for every analytical run. A duplicate sample, 

matrix spiked sample, and carryover blank were analyzed after every tenth sample. 

Two check standards and a carryover blank were also inserted at the beginning, middle, 

and end of each analytical run. Two blank samples were also interspersed between each 

set of five environmental samples. All standard solutions, blanks, and matrix spikes 

were treated the same as the environmental water samples.  
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Pharmaceuticals 

Roughly 30 mL of unfiltered water for pharmaceutical analysis was collected in a 40-mL 

amber glass vial and shipped within seven days to the USGS National Water Quality 

Laboratory in Denver, CO, for analysis. Upon receipt at the laboratory, 10 to 30 mL of 

the leachate sample was filtered through a 0.7-µm nominal pore size glass-fiber filter 

(Whatman GF/F).  A 100-µL aliquot of the filtered water sample was injected into a 

high-performance liquid chromatograph (HPLC) coupled to a triple quadrupole mass 

spectrometer (MS/MS) by using an electrospray ionization source operated in the 

positive ion mode.  The 109 compounds were separated using a reversed-phase 

gradient of formic acid/ammonium formate-modified water and methanol. Multiple 

reaction-monitoring (MRM) of two fragmentations of the protonated molecular ion of 

each analyte to two unique product ions was used to specifically and sensitively 

identify each compound.  The primary MRM precursor-product ion transition was 

quantified for each compound relative to the primary MRM precursor-product 

transition of the specific isotope-dilution standard chosen for that compound.  The 

secondary MRM precursor-product ion transition was used to qualitatively confirm 

compound identity.  The use of direct analysis without prior sample preconcentration 

and cleanup steps, combined with the separation provided by the HPLC and the 

selectivity and specificity of the MRM-MS/MS technique, resulted in method detection 

limits (MDLs; determined in reagent water) that range between 0.45 and 94.1 ng/L; the 

median MDL for all pharmaceuticals was 5.2 ng/L.  The majority of MDLs for this 

method, as defined by the 25th and 75th percentiles of MDL distribution, were between 

2.8 and 18 ng/L.  Laboratory reagent spike and laboratory reagent blank samples were 

included with every 17 environmental samples.  This method and the associated 

validation results and performance characteristics are described in detail elsewhere 

(Furlong et al., 2014).  Two field blanks (pesticide grade organic blank water) and five 

field replicate samples were collected and analyzed for pharmaceuticals during the 

study period.   

 

Original pharmaceutical results from the laboratory were given an additional screening 

using three main steps. First, a technique (similar to the algorithm technique now used 

with schedule 2440) was used to screen detection values less than the method detection 

limit and list them as non-detections. Second, all detections less than 1 ng/L were 

treated as non-detections. Third, all value qualifier codes from the laboratory were 

closely examined. The following are examples of how these qualifier codes were used 

for decision-making purposes. 

 Example 1. Detection was below the laboratory reporting limit but above the 

long term method detection limit, the compound was considered present in 

the sample but cannot be quantified (“detection”).  
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 Example 2. The value was below the long term method detection limit, the 

value was treated as a non-detection.  

 Example 3. The analyte was detected in the laboratory blank, the blank 

detection value was compared to the environmental sample value; if the 

environmental sample detection was >3× the blank detection value then the 

concentration was reported; if sample detection was <3× the blank detection 

value then the concentration was treated as a non-detection. 

One of the organic compounds analyzed was atrazine, which was also analyzed at a 

higher detection limit using EPA method 8270 as described on the previous page.  

Results for atrazine are reported along with the pesticides and pesticide degradates in 

this report.  The remaining 108 compounds are grouped as “pharmaceuticals” in this 

report.   

Microbial Indicators 

Samples for microbial indicators were collected in sterile 100-mL bottles supplied by 

SHL. Sterile, 4-ounce sampling containers were used for all microbial indicator samples; 

one bottle for each analyte. Samples were kept on ice packs and shipped daily to SHL to 

allow for analysis within 24 hours of sample collection.  

 

The method performed by SHL for the total coliform and E. coli analyses was Standard 

Method 9223 using the IDEXX Colilert® product.  Enterococci analysis was performed 

using IDEXX Enterolert® reagent.  All analyses were reported in most-probable-

number (MPN) per 100 milliliters.  SHL used EPA Method 1602, a single agar layer 

procedure, to detect male-specific and somatic coliphages.  The quantity of coliphages is 

expressed in plaque-forming units per 100mL (PFU/100mL).  For quality control 

purposes, both coliphage positive and negative reagent water were analyzed for each 

type of coliphage with each sample batch.  Four field blanks and five field replicate 

samples were collected and analyzed for microbial indicators during the March – May 

sampling period. 

Viruses and Pathogenic Bacteria 

Samples were obtained directly from the wellhead prior to any water treatment 

following the method of concentration on glass-wool filters of Lambertini et al. (2008).  

1000 liters (L) of well water were sampled (with a few exceptions when flow through 

the filters was unusually slow) using a sampling apparatus as shown in Figure 3.   The 

filtered volume was measured using an in-line flowmeter. For wells with pH levels 

greater than 7.5, a constant pH of 6.5 – 7.0 was maintained during sampling by using an 

in-line acid pump supplied with an acid buffer.  Field blanks were collected by 

pumping 19 L of autoclaved tap water through a glass wool filter using decontaminated 
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field equipment. Glass wool filters were shipped overnight to the USGS-ARS laboratory 

(Marshfield, WI) on ice and processed the day after sampling.  Upon receipt at the 

laboratory, elution of the glass wool filters, extraction of RNA and DNA, and analyses 

by quantitative polymerase chain reaction (qPCR) proceeded as described in Borchardt 

et al. (2012). Primers and probes used to quantify specific organisms are listed in Table 3 

along with corresponding references.   

 

Sampling equipment blanks were conducted in the field three times during the March-

May sampling period. Filter recovery controls were conducted with water from four 

sampling sites (Appendix C). Inhibition to the PCR assays was measured on every 

sample and mitigated following the methods described in Borchardt et al. (2012) and 

Gibson et al. (2012).  Negative controls were performed for every batch of PCR analyses 

including nucleic acid extraction, PCR master mix, and reverse transcription master mix 

(for RNA viruses). Positive controls for each target also were performed for every batch 

of analyses. Standard curve efficiencies (equal to    10-1/slope) and error values indicate 

highly efficient amplification reactions (perfect amplification would have an efficiency 

of 2) and accurate quantification (<0.2) as reported in Table 3.   

 

Using the theoretical detection limit of 3 genomic copies per PCR reaction (Wittwer and 

Kusawaka, 2004), and assuming a 1000-L sample, the calculated limit of detection 

(LOD) for RNA viruses is 3.1 genomic copies/L, and for DNA targets it is 0.54 genomic 

copies/L. LOD is defined here as 95% probability of detection.  Measured concentrations 

below the LOD are reported, though the probability of detection is lower. 
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Figure 3. Virus sampling apparatus at one of the study locations (pH adjustment not shown). 

 
Table 3. Targets, citations, and amplicon size in base pairs (bp) for microorganisms quantified 

by quantitative polymerase chain reaction. 
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Statistical Analyses 

Spearman’s rank correlation analyses using JMP software (SAS Institute, Cary, NC) 

were performed to evaluate whether commonly measured analytes could be used as 

indicators of less frequently assessed contaminants, and to determine whether 

numerical well characteristics correlated to analyte concentrations.  This nonparametric 

statistical method was chosen because analyte concentrations were rarely normally 

distributed and often heavily left-censored.  This method assumes a monotonic 

relationship between variables.  The closer the absolute values of the resulting 

Spearman’s rho (ρ) coefficients are to 1, the higher degree of correlation.  Negative 

values of ρ denote negative correlations.  Results of these analyses were considered 

significant at α = 0.05.  Numerical well characteristics included well age (by year 

constructed), confining layer thickness, well depth, pumping rates, and recent 

precipitation totals.  Given the sample size and the total population of wells in the state, 

measured concentrations from at least 12 wells (33% of samples) were needed to meet a 

95% confidence level standard with a confidence interval of 12%.  Four of the analytes 

selected for correlation analyses were not detected frequently enough to meet this 

standard (uranium, alachlor ESA, atrazine, and metolachlor OXA); therefore, caution 

should be used when interpreting those results.  For these analyses, concentrations 

reported as non-detections were assigned values of half the limit of quantitation (Helsel 

and Hirsch, 2002).  Occurrence of individual pharmaceuticals was not sufficient to 

support correlation analyses, and the more frequently detected pharmaceuticals often 

were reported only as “detects;” therefore, correlation analyses were done for the 

number of pharmaceuticals detected per well and for the sum of all pharmaceutical 

detections.  This method has been used previously by Schaider and others (2014).  

Correlation analyses were also performed for the number of microbial indicators and 

the number of microorganisms detected by qPCR.   

 

To assist the IDNR’s Source Water program with evaluation of risks to wells, 

relationships between individual contaminant concentrations and occurrence of groups 

of contaminants were investigated.  To determine whether distributions of 

concentrations of selected parameters differed between pairs of vulnerability classes, 

Wilcoxon rank sum analyses were performed using JMP software (SAS, NC). For these 

analyses, non-detections were assigned the value of the limit of detection, with the 

exception of the pharmaceuticals and atrazine, for which, non-detections were assigned 

half the method reporting limit, and the value of the method reporting limit was 

assigned to those samples with confirmed detections below the method reporting limit. 

 

Given the low detection rates for some contaminant groups, the effectiveness of current 

well vulnerability classification scheme was also evaluated for predicting the 
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presence/absence of groups of contaminants.  These analyses were completed using the 

chi-squared (χ2) statistic, or the “Fisher Exact Probability” test, when detection 

frequencies were below five percent.  These contingency analyses were completed using 

the R software package (R Foundation for Statistical Computing, Vienna, Austria). 

Contaminant groups included nitrate + nitrite, pesticides and pesticide degradates, 

pharmaceuticals, microbial indicators, and viruses and pathogens by qPCR.   As with 

the numerical correlation analyses, these categorical analyses were considered 

significant at α = 0.05.  Wilcoxon rank sum analyses were also performed to determine 

whether differences between concentrations of surface-derived contaminants could be 

associated with primary land use around wells classified as highly vulnerable.  Land 

use around a well can have a strong influence on water quality, with both urban and 

rural settings providing the potential for contaminants to reach groundwater.  For this 

study, primary land use within 1000 ft (305 m) of the well was determined from 2012 

satellite imagery (USDA, 2013) and grouped into three categories: developed (urban), 

grasses, and row crop.  These analyses were performed both with non-detections 

excluded and with non-detections assigned the value of the reporting limit. 

 

HYDROLOGIC CONDITIONS  

Numerous studies in Iowa have shown the presence and concentration of contaminants 

in relatively shallow, vulnerable aquifers often varies with recent recharge conditions 

(Hallberg et al., 1983; 1984; Libra et al., 1984; 1987; Seigley and Hallberg, 1991). Periods 

with significant recharge deliver contaminants to groundwater, resulting in generally 

greater rates of occurrence and/or concentrations. While this is a generality that 

depends upon the geologic setting and the contaminant type and source (i.e., point vs. 

nonpoint), the timing and magnitude of recharge events often impact groundwater 

quality. The Wisconsin virus studies, which included temporal sampling, suggest that 

this is true for virus occurrence in groundwater as well (Bradbury et al., 2013, Hunt et 

al., 2010).  

 

Initial planning for this study targeted October-November 2012 for sample collection. 

However, by late summer severe drought conditions had developed across much of the 

state and continued into the fall. Figure 4 shows departure from normal precipitation 

estimates by county for calendar-year 2012. Much of the state was substantially below 

normal, and in addition, the summer of 2012 was marked by significantly above-

average temperatures. In particular, July was the driest and second hottest month on 

record in Iowa (Iowa State Climatologist, 2013).  Soil moisture and hydrologic 

conditions responded accordingly. Figure 5a shows Iowa’s drought status at the 

beginning of October (Drought Monitor, 2013).  As a result of prolonged statewide 
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drought conditions, the sample collection window was moved to March and April of 

2013. Conditions improved in late fall and winter, with the greatest improvement in the 

east. In early March, roughly the northwest half of the state remained in severe to 

extreme drought, and the southeast half was classified as moderate drought to 

abnormally dry (Figure 5b).  Average precipitation fell in March across much of the 

state, and April was the wettest April on record, at almost 200% of normal; May 

continued this trend, and was also the wettest on record (Iowa State Climatologist, 

2013). By early May, about 60% of the state was considered to have returned to normal 

conditions, with only a few of the northwest counties still in severe drought (Figure 5c).  

The transition from drought to wetter-than-average conditions prompted the re-

sampling of five wells for a subset of analytes, including viruses, in June of 2013. The 

five wells chosen for the resampling were high-vulnerability wells and were selected to 

provide a wide spatial distribution while accommodating limited staff time and 

resources. 

 

The wetter conditions during the spring of 2013 generated groundwater recharge.  

Water levels are monitored continuously in nine shallow wells distributed across the 

state, as part of a joint Iowa DNR – USGS Iowa Water Science Center monitoring effort.  

Figure 6 shows the well locations and Figure 7 shows hydrographs for eight of the nine 

wells from March 1, 2013, through June 20, 2013, based on data extracted from USGS 

(2013c).  Wells in eastern Iowa, such those in Fayette and Hancock counties, show 

recharge occurred during the sampling period. In contrast, wells in western Iowa 

(Crawford and O’Brien counties) show little water table response until late in or after 

the sampling period.  
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Precipitation estimates for each sampled well location were obtained from the Iowa 

Mesonet, which utilizes Stage 4 analysis (Iowa Mesonet, 2013).  Early in March, snow 

was present in parts of the state, and snowmelt was not factored into precipitation 

estimates.  Estimated 7-day, 30-day, and 60-day antecedent precipitation totals are 

included in Appendix A. The 7-day totals varied from 0 to 10.5 centimeters (4.1 in), 30-

day totals ranged from 1.75 to 20.2 cm (0.69 to  7.95 in), and 60-day totals ranged from 

3.20 to 41.91 cm (1.26 to 16.50 in). 

 

 

 

 

 
 

Figure 5. Drought conditions for a) October 2, 2012; b) March 12, 2013; and c) May 7, 2013 (Drought 

Monitor, 2013). 

 

Figure 4. Estimated departure from normal precipitation by county (in inches) for 2012 (Iowa State 

Climatologist, 2013). 
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Figure 7. Hydrographs for eight shallow groundwater level monitoring wells across Iowa during the 

March-May and June 2013 sampling periods (from USGS, 2013c).  Water table depths are displayed in 

feet below the surface on the left axis and meters below the surface on the right. 

  

 

Figure 6. Locations of wells with continuous water-level monitoring as part of joint Iowa DNR – USGS efforts. 
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RESULTS 

Results are summarized below by groups of parameters.  For a listing of individual 

sample results, including quality assurance samples, refer to Appendix B. 

Tritium, General Water-Quality, Major Ions, and Nutrients 

Table 4 summarizes the results of tritium, general water-quality parameters, major ions, 

and nutrients, with basic statistical parameters and water-quality standards where 

applicable.   

 

Twenty-three (46%) of 50 samples contained tritium above the 0.8 TU detection limit, 

with a maximum concentration of 5.5 TU and a median of detections at 4.4 TU.  

Standard deviations resulting from repeated analyses were reported for each sample 

and ranged from 0.3 to 0.6 TU.  No differences in reported tritium concentrations were 

shown between laboratory duplicate samples as all of these analyses resulted in non-

detections (< 0.8 TU). 

 

Several of the general water quality parameters were detected at low concentrations 

(close to or at the quantitation limit) in the four field blanks.  Total hardness was 

detected at a concentration of 1 mg/L in one of the four samples.  Total alkalinity was 

detected in two of the four field blanks at concentrations of 2 and 3 mg/L.  Total organic 

carbon was detected at 0.8 mg/L in two of the blanks.  One of the blank samples 

contained 4 mg/L total dissolved solids, and one sample contained 1 mg/L total 

suspended solids.  Of the major ions, only silica and bicarbonate alkalinity were 

detected in field blanks at 0.12 mg/L and 2 mg/L, respectively.  Of the five nutrients, 

only total phosphorus was detected in the field blanks at a maximum concentration of 

0.08 mg/L.   

 

Results of field replicate analyses were generally consistent with those of their 

counterparts.  The largest differences were seen for turbidity (up to 13 NTU), total 

Kjeldahl nitrogen as N (up to 1.8 mg/L), and orthophosphate as P with a maximum 

difference of 0.37 mg/L. 

 

General water-quality characteristics of samples are illustrated using a Piper diagram 

(Figure 8).  In general, samples from the Cambrian-Ordovician had higher proportion of 

sodium (Na) and potassium (K) relative to other aquifers, which contain more calcium 

(Ca) and magnesium (Mg).  Samples from Silurian/Devonian wells generally have more 

bicarbonate (HCO3), while Mississippian and Cretaceous (Dakota) wells have higher 

proportion of sulfate.  Samples from both Cambrian-Ordovician and alluvial wells had 
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relatively higher proportions of chloride (Cl) than samples from other aquifers.  The 

chemistry of water drawn from buried sand and gravel aquifers varied widely.   

 

Ammonia was detected in 74% of the wells, while nitrate + nitrite was detected in 26% 

of the wells.  The maximum concentration of ammonia was 6.1 mg/L, which was found 

in a 170 m (558 ft) deep Silurian-Devonian well with 18 m (60 ft) of confining material.  

The maximum concentration of nitrate + nitrite (12.0 mg/L) was found in a 32 m (105 ft) 

deep Silurian well with no confining materials above the aquifer.  Nitrate + nitrite 

concentrations exceeded the drinking-water MCL for nitrate in two of 66 (3%) wells. 

Metals  

Table 5 summarizes the results of analyses for 19 metals, along with applicable water-

quality standards and action levels.  Samples were analyzed for four metals that are on 

the US EPA’s CCL and UCMR 3 lists: chromium, cobalt, strontium, and vanadium.  Of 

these, only strontium was detected.  While all but one of the samples had detectable 

levels of strontium, only two of 66 (3%) exceeded the health based screening level of 4 

mg/L.  Of the 16 metals with current drinking water standards, eight were detected, but 

only three (arsenic, iron, and manganese) ever exceeded the current standards.  As 

mentioned previously, exceedances of these standards in the sampled wells do not 

indicate that drinking-water standards were violated in the finished drinking water.  

No metals were detected in the four field blanks, and results of field replicates were 

consistent with their counterpart samples. 
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Table 4. Summary of results for tritium, general water-quality, major ions, and nutrients.  Maximum 

contaminant levels (MCL) and secondary drinking-water standards (2nd Std) are set by the EPA (US 

EPA, 2013c). 

 
 



 

31 

 

 
Figure 8. Basic water-quality parameters plotted on a Piper diagram by aquifer. 
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Table 5. Summary of the results for metal analyses, maximum contaminant levels (MCL), secondary 

drinking water standards (2nd Std), and action levels (US EPA, 2013c), and health-based screening levels 

(HBSL) (USGS, 2013b). 

 

Pesticides and Pesticide Degradates 

Samples were analyzed for 24 pesticides (herbicides and insecticides), and 11 pesticide 

degradates as summarized in Table 6.  Pesticide compounds were present in 41% of the 

samples. Of the 24 parent compounds, only atrazine and dimethanamid were detected.  

Atrazine was not detected above the 0.1 μg/L detection limit reported by SHL, whereas 

analyses at a detection limit of 0.0194 μg/L, included in the suite of chemicals analyzed 

by the USGS laboratory in Denver, CO, produced 13% detections.  Glyphosate, AMPA, 

and glufosinate were analyzed in 63 of the 66 wells by USGS using a method with a 

detection limit of 0.02 μg/L (Meyer et al., 2009).  Glyphosate and glufosinate were not 

present in any samples at or above that concentration, and AMPA was present at the 

quantitation limit (0.02 μg/L) in two of 63 samples (3%).  None of the pesticide 

compounds were detected in field blanks, and differences between original samples and 

field replicates were always smaller than the applicable method detection limit. 
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Pesticide degradate occurrence was higher than that of the parent compounds for 

pesticides with comparable detection limits. Acetanilide degradate detections included  

acetochlor ESA (20%), acetochlor OXA (8%), alachlor ESA (29%), alachlor OXA (5%), 

dimethenamid ESA (2%), metolachlor ESA (41%), and metolachlor OXA (14%).  OXA 

degradates of these acetanilide herbicides generally occurred less frequently than the 

ESA degradates.  None of the pesticides or pesticide degradates exceeded the health 

based screening levels (HBSLs) (USGS, 2013b), or the maximum contaminant levels 

(MCLs) or human health benchmarks for pesticides (HHBPs) set by the US EPA (US 

EPA, 2013c; US EPA, 2014b).  Figure 9 illustrates the occurrence and distribution of 

concentrations for pesticide detections.  Metolachlor ESA was both the most frequently 

detected pesticide and also the pesticide with the highest measured concentrations.  All 

but two samples had pesticide concentrations below 1 μg/L, and medians of the 

concentrations of positive detections were below 0.1 μg/L, except for metolachlor ESA 

(0.23 μg/L) and alachlor ESA (0.12 μg/L).  Co-occurrence of pesticide compounds (i.e., 

mixtures of pesticide degradates and parent compounds) was common. Twenty-three 

of the 27 samples with a pesticide detection had more than one pesticide compound 

present and as many as 6 chemicals measured in a single sample (Figure 10). 

Metolachlor ESA was present in all samples with pesticide detections. 
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Table 6. Summary of results for pesticides and their degradates along with benchmark values 

where available.  Detected compounds are highlighted in bold, and degradates are indented below 

their parent compound.  Health-based screening levels (HBSL) are listed by the U.S. Environmental 

Protection Agency (US EPA, 2013c; US EPA, 2014b). 
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Figure 9. Boxplots representing distributions of concentration for pesticides and pesticide degradates 

with non-detections excluded.  As the legend illustrates, the line inside the box represents the median 

of the detections, 50% of the data lie within the box, short lines on the whiskers indicate the bounds of 

90% of the data, and the numbers of detections are displayed above. 

 

 
Figure 10. Co-occurrence of pesticide detections by location. 
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Pharmaceuticals 

Samples for pharmaceutical analyses were taken from 60 of the 66 wells during the 

March-May sampling period.  Of the five wells sampled in June, two were obtained for 

the first time, and three were resampled from wells sampled during the March-May 

period.  A total of 63 samples were collected from 60 wells.  Samples were analyzed for 

109 individual pharmaceutical compounds.  Pharmaceuticals were detected in 22 (35%) 

of 63 samples, including two wells that had no detections of pharmaceuticals during the 

March-May sampling, but did have detections during the June sampling period.  Table 

7 summarizes the results of detected pharmaceuticals and lists their common name or 

use.  A full list of pharmaceutical results can be found in Appendix B.   
 

Table 7. Summary of results for detected pharmaceuticals. Confirmed detections below the method 

reporting limit are designated by “det.”  Metabolites are indented under their parent compounds. 

 
 

Of the 14 pharmaceuticals detected, six had reported concentrations above the method 

reporting limit, with the maximum reported concentration of any pharmaceutical at 826 

ng/L (acetaminophen).  Diphenhydramine was the only pharmaceutical to have two 

detections above the reporting limit, at 24.5 and 145 ng/L.  Eight pharmaceuticals had 

confirmed detections at concentrations below the method reporting limit (reported as 

“det” in Table 7).  Caffeine was the most frequently detected compound (25% detection 

frequency; maximum concentration 173 ng/L), followed by the caffeine metabolite, 1,7-

dimethylxanthine (16% detection frequency) (Figure 11).  
 

Most of the pharmaceuticals detected have specific human uses (1,7-dimethylxanthine, 

acetaminophen, atenolol, caffeine, carisoprodol, chlorpheniramine, cotinine, 
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diphenhydramine, nicotine, sulfamethoxazole, and tramadol).  Some, however, have 

multiple uses.  Thiabendazole has both human pharmaceutical uses (used to treat 

parasitic worms; Kappagoda et al., 2011) and human commercial uses as a preservative, 

but it is also commonly used as fungicide, and is increasingly used as a seed coating on 

soybeans (US EPA, 2002).  Warfarin is used as both a rodenticide and as an 

anticoagulant used in heart medication (US EPA, 1991).  Lidocaine is an anesthetic 

commonly used in anti-itch creams, and there are reports of lidocaine use in cattle 

operations (Duffield et al., 2010). Multiple pharmaceuticals were detected in 13 (21%) of 

the 63 samples (Figure 12), with up to four pharmaceuticals present in a single sample.  

Nine samples had one pharmaceutical detection, including two wells that had 

detections during the June sampling period, but not the March-May sampling period.   
 

 
Figure 11. Occurrence of pharmaceuticals detected in study wells.  *Atenolol and tramadol were 

detected during the June resampling period, but not during the March-May sampling period. 
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Figure 12. Pharmaceutical occurrence by well in chronological order of sampling.  *Indicates 

communities where the pharmaceuticals were detected during the June resampling period. 

Microbial Indicators 

Five microbial indicators were analyzed in all 66 samples from the initial sampling 

period (Table 8).  Male specific coliphage and enterococci bacteria were each detected 

once out of 66 samples (2%) and total coliform bacteria were detected in two of 66 

samples (3%) during the initial sampling.  During the resampling period, samples were 

only analyzed for E. coli, enterococci, and total coliform.  Of the five samples from this 

period, total coliform bacteria were detected in one sample at a concentration of 4.1 

MPN/100 ml.  Somatic coliphage and E. coli were never detected.   

 
Table 8. Summary of results for microbial indicator analyses. Items listed in bold have one or more 

detections. 
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Viruses and Pathogenic Bacteria 

The results of qPCR analyses for ten virus groups and three human pathogenic bacteria 

are shown in Table 9.  Sample volumes ranged from 392 to 1107 L, with a median value 

of 1003 L, and a mean of 953 L.  Volumes less than 1000 L were obtained from wells 

when the flow rate through the filter dropped below 4 L per minute.  Virus 

concentrations ranged from 0.46 to 6.38 copies/L.  None of the wells had detections of 

more than one microbial species using qPCR.  Fourteen of the 66 samples (21%) from 

the initial sampling period had viral nucleic acid detections, and only one sample (2%) 

tested positive for bacterial DNA.  Adenoviruses, enteroviruses, GI noroviruses, swine 

hepatitis E, Salmonella, and enterohemorrhagic E. coli were not detected in any of the 

samples.  Three wells (5% of samples) were positive for human pathogens; two viruses, 

the GII norovirus (4.23 copies/L) and human polyomavirus (3.07 copies/L), and one 

species of bacteria, Campylobacter jejuni (0.40 genomic copies/L).  One sample (2%) was 

positive for RNA from the animal pathogen, bovine polyomavirus, at a concentration of 

0.46 genomic copies/L.  All controls were in compliance; negative controls showed no 

quantification cycle measure (i.e., zero fluorescence increase) and positive controls had 

Cq (concentration quantification) values ± 0.5 cycles within their reference controls.  No 

viruses or bacterial pathogens were detected in the three field equipment blanks. 

 

Pepper Mild Mottle Virus (PMMV) was the most prevalent virus, detected in 11 of 66 

samples (17%), with a maximum concentration of 6.38 copies/L, and a median of 

positive detections of 4.28 genomic copies/L.  No PMMV or the other microbes were 

detected in samples collected in June.  Of the five resampled wells, two were positive 

for PMMV during the initial sampling period.  There was no co-occurrence of microbial 

indicators and microorganisms detected by qPCR, with the exception of one well 

(Janesville #3), where male specific coliphage was detected in the same sample as 

PMMV (Figure 13). 

 

Recovery controls using poliovirus, Campylobacter jejuni, and Giardia lamblia spiked into 

water from four wells yielded percent recovery ranges of 13%-102%, 23%-105%, and 

22%-72%, respectively.  Given that some matrix recovery rates were below 50% and 

filter recoveries were usually less than 100%, reported concentrations are conservative 

estimates.  
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Table 9. Summary of the results for virus and pathogenic bacteria analyses by qPCR.  The theoretical 

limits of detection (LOD) as defined by Wittwer and Kusawaka (2004) were modified using an assumed 

sample volume of 1000 L and defined by a 95% probability of detection.  Concentrations reported below 

these LODs have lower probabilities of detection. 

 
 

 
Figure 13. Microbe detections in chronological order of sampling.  Well samples and microbes with 

no detections are not shown. *The asterisk indicates a well sampled during the June resampling 

period. 

Correlations Between Analytes 

Spearman’s rank correlation analyses between analyte concentrations were performed 

to determine how commonly measured groundwater-quality parameters relate to each 
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other and to concentrations and/or numbers of CECs.  Table 10 displays results of these 

analyses for selected analytes.   

 

In general, concentrations of surface-derived analytes, including tritium, DO, chloride, 

nitrate, atrazine, and acetanilide degradates, were positively correlated to each other 

and negatively correlated to analytes considered to be naturally-derived, such as arsenic 

and ammonia.  All Spearman’s rho (ρ) correlation coefficients between tritium 

concentrations and nitrate + nitrite and pesticides/degradates were greater than 0.05, 

and significant at p < 0.001 or 0.0001.  Correlation coefficients between chloride and 

nitrate + nitrite and pesticides/degradates were less than 0.5, and were generally less 

significant. None of the commonly measured parameters significantly correlated to 

CECs with the exception of atrazine, which correlated significantly to concentrations of 

PMMV and to the number of microbe detections using qPCR.   

 

Strontium was the only metal listed on the UCMR3 list to be detected.  Strontium 

showed a significant positive correlation with TDS, turbidity, fluoride, and ammonia as 

nitrogen, and significant negative correlations with the surface-indicators: tritium, 

dissolved oxygen, and nitrate.  

 

Detection frequency of individual microbial indicators was too low to run correlation 

analyses.  Instead, the total number of microbial indicators per sample was used for 

analysis.  No significant correlation was seen between turbidity and the number of 

microbial indicators tested.  The sample with the maximum turbidity value of 190 NTU 

did have the only reported detection of bovine polyomavirus; however, the reported 

concentration of this virus was below the theoretical limit of detection.   

 

A closer look at the data confirms the usefulness of certain indicators for predicting 

whether nitrate and pesticide degradates will be present in raw groundwater.  Fifty 

percent of wells with detectable tritium levels (indicating recent recharge) contained 

nitrate.  Only one well without detectable tritium levels contained nitrate + nitrite (4%).  

Tritium was an even better predictor of the occurrence of acetanilide degradates, which 

occurred in 86% of the tritium-positive samples and only 4% of the tritium-negative 

samples.  Combining tritium and DO revealed even stronger prediction of occurrence of 

these contaminants.  One hundred percent of oxic (>0.5 mg/L DO) wells with detectable 

tritium contained detectable levels of both nitrate + nitrite and pesticide degradates.  

Only two (17%) of the 12 anoxic tritium-positive samples contained nitrate + nitrite, and 

these were the only two samples where ammonia and nitrate + nitrite co-occurred.    

 

Redox conditions are also likely to play an important role in determining whether or 

not dissolved arsenic is present in samples.  As shown in Figure 14, the five samples 
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that exceeded the MCL for arsenic occurred in anoxic waters (less than 0.5 mg/L 

dissolved oxygen). 

 
Table 10. Spearman’s rho correlation coefficients resulting from one-to-one correlation analyses between 

analyte concentrations and detection counts for select contaminant groups. 
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Figure 14. Dissolved oxygen concentrations vs. arsenic concentrations for study wells.  Dashed and 

dotted lines indicate limits of detection (LOD) for dissolved oxygen and arsenic, respectively. 

Relationships Between Well Characteristics and Contaminants 

Numerical and contingency analyses were performed to determine whether 

characteristics of each well, or conditions around the well, could be used to predict well 

water quality.  The results of Spearman’s rank correlation analyses for numerical well 

characteristics and measured concentrations of selected analytes are presented in Table 

11.  Significant negative correlations indicate that as confining layer thickness increases, 

concentrations of surface-derived analytes, including tritium, nitrate + nitrite, 

orthophosphate, total phosphorus, atrazine, and the sum of acetanilide degradates, tend 

to decrease.  Conversely, significant positive correlations show that as confining layer 

thickness increases, concentrations of naturally derived analytes, including ammonia 

and strontium, tend to increase.  Similar results were seen for well depth, although 

orthophosphate, total phosphorus, barium, and manganese showed stronger negative 

correlations with well depth than with confining layer thickness.  Results indicate that 

more recently drilled wells had lower concentrations of nitrate + nitrite and atrazine, 

but higher turbidity, iron, and manganese values.  Higher pumping rates were 

significantly positively correlate to some, but not all indicators of surface influence, 

including tritium, chloride, and two of the acetanilide degradates.  None of the well 

characteristics showed significant correlation with PMMV concentrations, the number 

of microbial indicators, the total number of microbes detected by qPCR, the sum of 

pharmaceutical concentrations, or the number of pharmaceutical detections.  Negative 

correlations were observed between the antecedent precipitation estimates and a variety 

of both natural and surface-derived water-quality parameters.   
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Testing the Vulnerability Classification Scheme 

A major objective of this study was to test whether the vulnerability classes (low, 

intermediate, and high), as defined by confining layer thickness, effectively predicted 

surface-related contamination, including CECs.    

 

Significant differences were seen for concentrations of tritium and nitrate + nitrite in 

high vulnerability wells compared to low and intermediate vulnerability wells (Figure 

15). Statistical differences between vulnerability classes were not seen for DO 

concentrations; however, the median DO value was higher (1.5 mg/L) for the high 

vulnerability class compared to the intermediate (0.5 mg/L) and low (0.3 mg/L) 

vulnerability classes.  Ammonia concentrations were significantly higher in low 

vulnerability wells than in intermediate or high vulnerability wells. 

 

Results of the contingency analysis showed significant differences (p < 0.001) in 

detection frequencies between vulnerability classes for both nitrate + nitrite and the 

pesticide and degradates group (Figure 16).  Differences between vulnerability 

categories were not significant for microbial indicators, pharmaceuticals, or the viruses 

and bacterial pathogens group.   

 

Statistical analysis revealed significantly higher concentrations of four of the five most 

commonly detected pesticides/degradates in high vulnerability wells compared to 

intermediate and low vulnerability wells, and no differences between low and 

intermediate vulnerability wells (Figure 17).  Metolachlor OXA showed significantly 

higher concentrations in high vulnerability wells than low vulnerability wells. 
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Table 11. Spearman's correlation coefficient (rho) for selected water-quality parameters vs. numerical 

well characteristics and antecedent 7-, 30-, and 60-day precipitation totals. 
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Figure 15. Boxplots representing distributions of concentrations of common water-quality parameters.  

Letters indicate significant differences between well vulnerability classes. 

 

 

 

 
Figure 16. Graph of detection frequencies of contaminant groups by well vulnerability classes.  

Numbers of detections are located within the columns. *Asterisks indicate contaminant groups 

for which differences between vulnerability classes are significant. 
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Figure 17. Boxplots representing distributions of the five most commonly detected 

pesticides/degradates by well vulnerability class.  Letters indicate differences between classes as 

determined by Wilcoxon rank sum analyses. 

Further examination of results from high vulnerability wells was conducted to 

determine whether concentrations of surface-derived contaminants could be associated 

with nearby land use.  These analyses were limited to nitrate and the five most 

commonly detected pesticides/degradates due to the low detection rates of other 

contaminant groups.  Figure 18 shows the results of these analyses with non-detections 

excluded; however, the same statistical differences were seen when the analyses 

included non-detections.  Highly vulnerable wells surrounded by grasses had 

significantly lower nitrate + nitrite concentrations than those in developed areas or areas 

surrounded by row crop.  While the differences were not significant due to low 

detection frequencies, the median and maximum atrazine concentrations were higher in 

wells surrounded by developed and grassy areas, than for wells surrounded mostly by 

row crops.  The highest median observed concentration of acetochlor ESA was 

associated with grassed areas.  Wells in developed areas contained significantly higher 

concentrations of alachlor ESA.  No significant differences were observed between land 

use categories for metolachlor ESA, the most commonly detected pesticide degradate.  

Although the differences were not significant, it appears that metolachlor OXA 

occurred at lower concentrations in wells surrounded by developed land than the other 

land uses.   
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Figure 18. Boxplots representing distributions of detected concentrations of nitrate and the five most 

commonly detected pesticides/degradates in samples from high vulnerability wells by land use class.  

Lettering indicates differences between classes as determined by Wilcoxon rank sum analyses with 

non-detections excluded.  Where no letters are displayed, no significant differences were found. 

DISCUSSION 

The results of this 2013 survey provide a baseline for evaluation of CECs in Iowa’s 

groundwater.  In addition, these results expand our understanding of water-quality 

parameters and contaminants that have previously been studied.   

 

Tritium concentrations found in this study were within a reasonable range, given other 

recent tritium analyses of readily recharged groundwater and surface water in Iowa 

(Schilling and Tassier-Surine, 2006; Fields et al., 2012) and southern Wisconsin 

(Bradbury et al., 2010). These recent studies suggest that precipitation entering 

groundwater systems in the area currently contain 5-10 TU.  Interpretations of tritium 

concentrations must consider that groundwater can be a mixture of waters of various 

ages. Groundwater containing as much as 15% post-1953 recharge may not have 

detectable tritium at the detection limit used in the current study.  In general, highly 

vulnerable wells had younger water than the intermediate and low vulnerability wells, 

as determined by tritium content; thus, the vulnerability classification serves as a 

reasonably reliable water age predictor.  The detection of tritium in a few individual 

wells classified as low vulnerability suggests that additional investigation of the 

hydrogeology surrounding these wells may be necessary. If the tritium analysis had a 

lower quantitation limit, differentiation between estimated ages of water in 

intermediate and low vulnerability wells may have been improved.   

 

Continued assessment of nitrate concentrations in Iowa’s drinking-water sources is 

imperative in order to meet drinking water standards aimed at protecting the health of 

infants, and to assess additional public health risks (Ward et al, 2005).  Comparison 
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between the results of this study and previous groundwater surveys are difficult 

because of differences in analytes, analytical methods, limits of quantitation, and well 

selection protocols; nevertheless, these comparisons help us assess risk and are useful 

for informing future investigations.  For example, both occurrence and concentrations 

of nitrate + nitrite as N measured in this study were lower than levels of nitrate as N 

found in the SWRL2 study of private wells.   The frequency of detection of nitrate in the 

SWRL2 study was 49% (CHEEC, 2009) compared to 26% in this study.  The maximum 

concentration of nitrate found in SWRL2 was 63 mg/L nitrate as N (CHEEC, 2009), 

whereas the maximum for this study was 12 mg/L.  Although nitrate + nitrite (as N) was 

measured for this study, and only nitrate (as N) was measured for the SWRL study, the 

values for these two tests should be comparable in an aquatic environment.   

 

Like nitrate, bacterial indicators of surface-related contamination were found less 

frequently in this study than in SWRL2.  E. coli were not detected in any wells in this 

study, whereas they were found in 11% of wells in SWRL2 (CHEEC, 2009).   Enterococci 

bacteria were found in 2% of the wells in this study, compared to 19% of SWRL2 wells 

(CHEEC, 2009). These differences do not necessarily indicate an improvement in 

statewide groundwater quality, but could result from differences between the 

populations of wells sampled, including the locations, construction methods, age, 

maintenance status, or source-water protection activities.  

 

Both this 2013 study and SWRL2 report 8% of wells in exceedance of 0.010 mg/L arsenic, 

a naturally-derived contaminant.  The IGWM network, which includes arsenic analyses 

for 2,289 samples of raw public well groundwater, shows 10% exceedance of the arsenic 

MCL (Libra, 2011).  As shown in Figure 14, redox conditions (as indicated by DO 

concentrations) play an important role in determining whether arsenic will be present 

in groundwater samples.  Many others have also documented the effects of redox 

conditions on arsenic mobility.  For example, Gotkowitz et al. (2004) documented 

sources of arsenic and differences between the effects of redox conditions on arsenic 

mobility within the aquifer and the borehole.  Additional work is necessary to better 

understand the relationships between geologic formations, redox conditions, and 

arsenic occurrence in groundwater, and to determine if other arsenic hotspots exist, like 

the area in Cerro Gordo County, recently documented by Schnoebelen and Walsh 

(2014).  The current IGWM network averages less than one well per county, which is 

insufficient to identify localized areas with high concentrations of arsenic in 

groundwater. 

 

In a study of agricultural chemicals in 1,019 public water supply wells in Iowa, atrazine, 

alachlor, cyanazine, and metolachlor detection frequenciesof 13.2%, 3.3%, 4.1%, and 

14.1%, respectively for the period from 1992-1995 at the detection limit of 0.1 µg/L 
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(Kolpin et al., 1997b).  Since this previous study, cyanazine has been voluntarily 

removed from the market, alachlor is in the process of being replaced with acetochlor, 

and metolachlor had a change in formulation, which resulted in lower rates per acre 

being applied.  Data from Iowa indicate reductions in annual use of these pesticides 

from 1992-2011 (USGS, 2013a).  Our study found a 13% detection frequency for atrazine 

at a lower detection limit (0.01 µg/L).  Cyanazine was not detected at the 0.01 µg/L 

detection limit, and neither alachlor or metolachlor were detected at 0.025 µg/L.  Our 

results indicate a possible reduction in risks from these four compounds; however, 

differences in sample populations and timing between these studies indicates that 

caution is necessary when drawing comparisons.  Interpretation of these results should 

also take into consideration seasonal variations in pesticide applications.  For this study, 

samples were taken in late winter, prior to the typical application period for pre- and 

post-emergent herbicides.  Monitoring of shallower, typically more susceptible, private 

wells has shown atrazine detections from 8-19% of the wells sampled, at a detection 

limit of 0.1 μg/L (Kross et al., 1990; Iowa DNR, 2004; CHEEC, 2009).  

 

As with previous studies (Kolpin et al., 1996; 1997a), pesticide degradate occurrence 

was higher than that of the parent compounds for pesticides with comparable detection 

limits. In this study, the three most commonly detected pesticides degradates were 

metolachlor ESA (41%), alachlor ESA (29%), and acetochlor ESA (20%).  OXA 

degradates of these acetanilide herbicides generally occurred less frequently than the 

ESA degradates.  Testing on human health effects indicates that acetanilide herbicide 

degradates may be less potent than their parent compounds (Gadagbui et al., 2010); 

however, studies are limited and complicated by the potential for synergistic effects of 

contaminant mixtures (Toccalino et al. 2012).  Drinking water standards for individual 

degradates or mixtures may be assigned in the future (US EPA, 2014b).  Continued 

monitoring of vulnerable groundwater supplies for these contaminants should be a 

priority.   

 

Over a decade has passed since Kolpin et al. (2004) reported no detections of glyphosate 

or AMPA in 86 Iowa raw PWS well samples. In a more recent nationwide study that 

included groundwater samples from Iowa, 5.8% of over 1,171 samples had detections of 

glyphosate and 14.3% had detections of AMPA (Battaglin et al., 2014).  Despite 

increased usage and sales, glyphosate remained undetected in this 2013 Iowa study, 

suggesting that under drought or post-drought conditions, the risks of glyphosate 

reaching and/or persisting in groundwater is low.  AMPA was found in 2 (3%) of the 

samples at the limit of quantitation (0.02 μg/L).  It is possible that the AMPA was 

detected more frequently than glyphosate because it persists in soils for slightly longer 

than its parent compound, glyphosate (Bergstrom et al., 2011); however, glyphosate is 

not the only potential source of AMPA.  AMPA can also be formed from the breakdown 
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of phosphonic acids, such as those found in cleaning products (Skark et al., 1998).  

Additional groundwater monitoring shortly after application and/or during wetter 

periods would be necessary to fully understand potential risks from these compounds.   

 

Studies in Wisconsin showed virus detection rates of 20 to 40% during normal-to-wet 

weather (Bradbury et al., 2013), with detections dropping to 2 to 4% during or following 

very dry periods (Gotkowitz et al., 2014).  Excluding the results of PMMV analyses in 

this study, which were not included in the studies in Wisconsin, our results are 

consistent with their results during very dry periods.  Variations in the levels of viruses 

in wastewater sources could also play a role.  Shedding of enteric viruses, for example, 

often varies seasonally in human and animal wastes.  Communities generally have a 

higher incidence of enterovirus circulating in late summer months and early autumn 

and infections are more common in these months (Nelson et al., 1979).  Norovirus 

infections tend to be more frequent in late summer and early autumn as well (Rohayem, 

2009).  It is also possible that the population of wells selected for this study may be less 

vulnerable or less prone to preferential flow than the wells studied in Wisconsin.  No 

significant correlations were observed between 7-day, 30-day, or 60-day antecedent 

rainfall estimates and virus occurrence. Further study is needed to better establish the 

relationship between climate, subsurface conditions, and virus occurrence in 

groundwater.  

 

The detection frequency of PMMV in this study (17%) was relatively high compared to 

all other viruses, pathogenic bacteria, and microbial indicators.  PMMV has been 

reported to be present at consistently high concentrations in human wastewater influent 

and effluent and has been suggested as a promising indicator for human enteric viruses 

in aquatic environments (Kitajima et al., 2014). Future studies are needed to understand 

why PMMV was detected far more than all the other enteric viruses in this study and 

determine the source(s) of these viruses, such as wastewater treatment effluents or 

leaking sanitary sewers as described by Davison et al. (2013).  It should be noted that 

there is currently no direct evidence of PMMV human infections, although one study 

found an association between PMMV ingestion and itching, abdominal pain, and fever, 

which the authors concede could have been caused by confounding factors, such as 

eating spicy food (Colson et al., 2010).  Atrazine was the only commonly analyzed 

parameter that correlated significantly to PMMV concentrations and to the number of 

microbe detections by qPCR.  Confidence in these correlation is low given that both 

atrazine and the microbes detected by qPCR occurred in less than one-third of the 

samples.  Further investigation revealed that four of the 11 PMMV-positive samples 

contained detectable concentrations of atrazine.   
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The frequency of detection of one or more pharmaceutical compounds in untreated 

groundwater in this study (35%) was greater than reported by a California study (2.3%; 

Fram and Belitz, 2011) but less than a national study of susceptible groundwater (81%; 

Barnes et al., 2008).  The most commonly detected pharmaceutical in this study was 

caffeine (25%), which is a higher detection frequency than reported by Barnes et al. 

(2008) for untreated public water supply wells.  In a study targeting vulnerable wells in 

urbanized areas of Minnesota by Erickson et al. (2014), the antibiotic sulfamethoxazole 

was the most commonly detected pharmaceutical (11.4% greater than 5 ng/L), while 

caffeine was only detected once (<1% of samples above 60 ng/L).  Whereas our study 

targeted only public water supply wells, the Minnesota study included monitoring 

wells, three of which were in close proximity to landfills, and one of these had 10 CEC 

detections in a single well (Erickson et al., 2014). 

 

Analyses revealed significant correlations between nitrate + nitrite, atrazine, several 

pesticide degradate compounds, and tritium (a measure of relative water age), and to a 

less degree,  chloride.  However, none of the commonly measured water-quality 

parameters were good predictors of CEC concentrations.  Additionally, the well 

vulnerability categories are good predictors of the occurrence of nitrate + nitrite and 

pesticide degradates, but no differences between microbial or pharmaceutical 

occurrence were found between well vulnerability classes.  Larger sample size, or 

different hydrological conditions, could result in more significant results if detection 

rates are increased. Results of analysis of alachlor ESA concentrations in high 

vulnerability wells by land use suggests greater use of alachlor in developed areas, but 

it is also possible that characteristics of the subsurface control the fate and transport of 

this compound: the four wells with highest alachlor ESA concentrations are within a 

limited geographical region (~35 miles) dominated by karst.  

 

Our analyses showed no correlation between pharmaceutical data and any of the 

physical well characteristics, land use, precipitation values, or commonly measured 

water-quality parameters.  Well vulnerability class, based on confining layer thickness, 

was also not a useful predictor.  Additional research is needed to improve our ability to 

understand the fate and transport of pharmaceutical compounds in groundwater.    

 

Correlation analyses revealed that more recently drilled wells have lower 

concentrations of nitrate + nitrite and atrazine, but higher turbidity, iron, and 

manganese values.  This correlation may result from improved well construction, 

source water protection activities, and required separation distances from contaminant 

sources.  Recently, there has been an emphasis on properly installing casings to depths 

that take advantage of existing geologic confining layers as a natural protective layer.  It 

is also possible that communities prefer to use protected bedrock aquifers rather than 
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aquifers with known surface contamination, despite the potential for naturally-derived 

contamination.  
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CONCLUSIONS 

The primary objective of this study was to document the occurrence of a large suite of 

potential contaminants in wells that are representative of the various groundwater 

resources in this state.  While this study was unique in its coverage of contaminants of 

emerging concern, it highlights the fact that well-known naturally derived and surface-

derived contaminants like arsenic and nitrate continue to pose water-quality challenges 

for residents of this state.  Arsenic was detected in 36% of the samples and 8% exceeded 

the MCL of 0.010 μg/L.  Nitrate + nitrite was detected in 26% of the wells sampled and 

3% of these samples exceeded the MCL of 10 mg/L.  Occurrence of microbial indicators 

was low (6%). 

 

At 41% detection, the most commonly detected contaminant group was pesticide 

compounds.  Of these, the most common were acetanilide degradates.  None of the 

measured concentrations of pesticide compounds exceeded current benchmark levels; 

however, several of these compounds are listed on the EPA’s CCL and could be subject 

to drinking water standards in the future. Despite heavy use in the past decade, 

glyphosate was not detected, and its metabolite, AMPA, was only detected in two of the 

60 wells tested (3%) at the detection limit of 0.02 μg/L.   

 

Pharmaceuticals were the most commonly detected CEC, as a group, with at least one 

pharmaceutical detected in 35% of the samples. While detection of pharmaceuticals was 

relatively high given the recent drought conditions and the proportion of low 

vulnerability wells included in the study, concentrations of these chemicals were low.  

Most pharmaceutical detections were at concentrations below the state-of-the-art 

method reporting levels and the maximum measured concentration was 826 ng/L 

acetaminophen (parts per trillion).  For perspective, it would take almost 200,000 cups 

of untreated well water to equal the dose of acetaminophen recommended for infants 

(40 mg). 

 

Viruses and pathogenic bacteria were detected in 21% of the samples by qPCR.  Most of 

the microbes detected were not pathogenic to humans.  The human pathogens, human 

polyomavirus, GII norovirus and Campylobacter were each detected once at 

concentrations close to their respective quantitation limits.  The most common virus 

detected was PMMV (17% of samples). Our results confirms what other studies have 

shown, that transport of viruses to groundwater is possible, even in wells considered to 

be protected from surface contamination.  Further study will be necessary to determine 

possible sources of the viruses and bacterial pathogen that were detected, and to see if 

trends respond to changes in precipitation and subsurface conditions. 
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A secondary objective of this study was to determine if any commonly measured 

analytes could be used as indicators for pharmaceuticals, viruses, and pathogenic 

bacteria. While common indicators of contamination from the surface were positively 

correlated to each other, they showed no significant correlation to CECs. On the other 

hand, individual analytes within each group of contaminants appear to be promising 

indicators for their respective groups.  Metolachlor ESA was the most frequently 

detected pesticide and also the pesticide with the highest measured concentrations.  

Additionally, metolachlor was always present in wells where pesticides or pesticide 

degradates were detected.  For pharmaceuticals, caffeine was the most commonly 

detected compound, although, concentrations were often below the method reporting 

level.  The study confirms that PMMV is a promising indicator for virus occurrence in 

groundwater.  Additional research is necessary to determine potential sources of 

PMMV in Iowa. 

 

The final objective of this study was to determine if a system of vulnerability 

classification based on confining layer thickness, originally developed for nitrate, was 

applicable to groups of CECs.  While we confirmed that this vulnerability classification 

method is well-suited to predict the occurrence of nitrate and degradates of acetanilide 

pesticides, it is not reliable for prediction of occurrence of pharmaceuticals or viruses.  

The lack of predictability of pharmaceutical and virus occurrence also means that 

identification of preferential transport pathways will become more important for source 

water protection assessments, where risks from these contaminants are identified. 

 

Results of this study point to differences in the potential sources and behaviors of these 

contaminant groups, and the need to look more closely at potential transport pathways 

and other interactions, specifically for pharmaceuticals and viruses.  As this was the 

first time groundwater was systematically sampled for these CECs, additional 

monitoring will be necessary to determine whether the results presented here are 

consistent with sampling under different (wetter) hydrological conditions.  This study 

will provide a baseline for future studies aimed at evaluating groundwater-quality 

trends and risk assessment related to viruses and pharmaceuticals.  Additionally, 

follow-up investigations of individual PWS with CECs detections are recommended to 

determine the possible sources of this surface-related contamination. 
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