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PHANEROZOIC HISTORY OF THE CENTRAL MIDCONTINENT, UNITED STATES

by Bill J. Bunker, Brian J. Witzke, W. Lynn Watney, and Greg A. Ludvigson

Introduction

The region of the central midcontinent has commonly been termed the "stable

interior" of the North American continent. The magnitudes of Phanerozoic crustal

deformation in the cratonic interior certainly are very small compared to those

known from active continental margins, and the rates of deformation have been

generally slower (Schwab, 1976). Nevertheless, the Phanerozoic sedimentary

record in the central midcontinent region is replete with evidences of tectonic

activity of surprising diversity and pattern. The central midcontinent, as de

fined for this report, includes Iowa, Kansas, southeastern South Dakota, Nebraska

(excluding the panhandle), southern Minnesota, and Missouri north of 37°N lati

tude.

The Phanerozoic stratigraphic record in the central midcontinent region of

North America is divided into six major depositional sequences, each bounded by

major interregional unconformities (Sloss, 1963). The structural and strati-

graphic development of this region is evaluated utilizing a series of isopach and

paleogeologic maps constructed within the general framework of Sloss' (1963)

cratonic sequences (text fig. 1).

Text Figure #1 near here

Precambrian Basement Framework

Phanerozoic sedimentary rocks in the central midcontinent region are under

lain by Archaean and Proterozoic igneous, sedimentary, and metamorphic rocks.

The Midcontinent Rift System (MRS), which bisects the midcontinent, is one of

several prominent structural features evident in the Precambrian basement complex



of this region (PI. 3, fig. 1). Prominent gravity and magnetic anomalies and

drillhole data document extension of the MRS southwestward from Lake Superior

beneath the Paleozoic cover into northeastern Kansas (King and Zietz, 1971; Van

Schmus and Hinze, 1985). Basalts, related mafic intrusions, and thick sed

imentary rock sequences characterize this Keweenawan rift system. Offsets of the

MRS near the Nebraska-Kansas and Iowa-Minnesota borders have been interpreted as

possible transform faults (Chase and Gilmer, 1973) associated with development of

the MRS. The central area of the MRS was uplifted during the Late Proterozoic,

dramatically reorganizing the structure and creating a complex fault-bounded

horst system along its axis (Craddock, 1972; Anderson and Black, 1982). Phanero

zoic faulting and flexuring along the southern margin of the central horst area

attest to continued structural activity along Precambrian basement structures

associated with the MRS.

The Chadron and Cambridge arches of Nebraska and the Central Kansas Uplift

(PI. 3, fig. 1) are part of a north-northwest trending Precambrian structural

high (Black Hills-Central Kansas Uplift, Muehlberger et al., 1967) along the

western margin of the study area. This basement feature appears to have remained

structurally positive with respect to adjacent areas throughout much of the

Phanerozoic. The central area of this feature (i.e. Chadron and Cambridge

arches) cuts across a portion of the north-northeast trending Transcontinental

Arch (PI. 3, fig. 2) , a broad midcontinent Phanerozoic structural feature.

The Sioux Ridge (PI. 3, fig. 1), a prominent Precambrian paleotopographic

feature, cuts diagonally across the crest of the Transcontinental Arch. The

ridge forms an east-west trending feature occupied by a broad synclinal fold of

Proterozoic Sioux Quartzite, which was more resistant to erosion than the flank

ing older Precambrian basement units (Baldwin, 1949; Bunker, 1981). Phanerozoic

rock units have onlapped and overstepped the ridge repeatedly, only to be



erosionally stripped back during periods of emergence.

The area between the Sioux Ridge and the Black Hills-Central Kansas Uplift

served as an intermittent seaway connection (Nebraska Sag, Adler et al., 1971;

PI. 3, fig. 3) between the Williston Basin and the central midcontinent during

various intervals in the Paleozoic. At times, seas appear to have migrated

around the northern flank of the Sioux Ridge connecting with the eastern Iowa area

Sauk Sequence

Sauk Sequence rocks were deposited in the central midcontinent during the

Cambrian and Early Ordovician (text fig. 1).

Cambrian. Sauk deposition was initiated over most of the area during the

Late Cambrian, although thick basal Sauk sandstone sequences in portions of

Illinois and Iowa probably include older Cambrian strata. The basal Sauk sand

stone interval, assigned to the Mt. Simon Sandstone, reaches a thickness in

excess of 750 m in northeastern Illinois and ranges from 150 to 450 m across most

of eastern and central Iowa. The Mt. Simon thins abruptly against the south

eastern margin of the central horst of the MRS in Iowa. Across western Iowa,

Missouri, Nebraska, and Kansas, the basal Sauk sandstone sequence (variably

assigned to the Lamotte, Reagan, or Mt. Simon Ss) is markedly thinner (10-100 m)

and is locally absent over topographic highs on the Precambrian surface. In

general, regional thickness patterns of the basal Sauk sandstone interval "appear

to be unrelated to that of overlying" Sauk strata (Howe et al., 1972, p. 51).

The Precambrian surface had significant relief prior to burial by Sauk

rocks: up to 450 m in the Ozark-St. Francois Mountains area of Missouri (Cheno-

weth, 1968), up to 500 m across the MRS in central Iowa, and knobs with up to 200

m of relief in Kansas (especially along 38°N). Most of the Precambrian surface

in the central midcontinent was buried during the Sauk II interval (Palmer,

1981), although some topographic and structural features remained emergent until



later Sauk deposition. Structural patterns developed during deposition of the

post-Mt. Simon Sauk interval are reflected on the regional isopach map (PI. 3,

fig. 2). In general, the Sauk Sequence thickens southeastward across the study

area toward the present-day Illinois Basin and Ozark Uplift area. Northward from

the region of maximum Sauk subsidence in the Illinois and "Ozark basin" (Lee,

1943, 1956) areas, the Hollandale Embayment represents an axis of Sauk thickening

which trends across eastern Iowa into southern Minnesota. Broad positive

structural elements reflected on the Sauk isopach map include the Southeast

Nebraska Arch, Transcontinental Arch, and Wisconsin Dome (with its southward

extending arch). A broad Precambrian upland area, "ancestral to the central

Kansas uplift" (Chenoweth, 1968, p. 1683), occupied the central part of Kansas

during the Cambrian. As suggested by Keroher and Kirby (1948), this positive

structural feature may not have been buried by Sauk deposits until the Early

Ordovician.

The Sauk Sequence in the central midcontinent is characterized by a series

of depositional cycles (Ostrom, 1970). The first major cycle spread marine and

marginal marine deposits across most of the study area during the Dresbachian.

Following deposition of the basal Cambrian sandstone, a series of broad marine

facies became established in the area by the middle to late Dresbachian: 1) pre

dominantly sandstone in eastern Minnesota and Wisconsin (Eau Claire Fm), 2) mixed

facies of siltstone, shale, sandstone, and minor carbonate across eastern Iowa

and northeastern Missouri (Eau Claire Fm), and 3) carbonate-dominated facies with

some shale and siltstone across central and western Iowa and much of Missouri

(Bonneterre Fm). The Wisconsin Dome area and/or nearby regions on the Canadian

Shield were the primary clastic source terranes. Potential sources of detrital

materials include Keweenawan sediments (especially sandstones) and Precambrian

granitic and other igneous/metamorphic rocks. The broad exposed crystalline



terrane on the Transcontinental Arch apparently supplied comparatively little

clastic material to the adjacent seaway during Sauk deposition.

Keroher and Kirby (1948), Lochman-Balk (1971), and Chenoweth (1968) corre

lated supposed late Dresbachian carbonate strata (Bonneterre) across eastern

Kansas, and suggested that "Franconian and early Trempealeauan" strata are "ab

sent over most" of Kansas (Chenoweth, 1968, p. 1676). However, the discovery of

Franconian fossils in the basal Cambrian sandstone of southwestern Missouri

indicates that "the Bonneterre Formation is not present" in the area (Kurtz et

al., 1975, p. 19). Instead, the basal Cambrian sandstone-carbonate succession in

eastern Kansas may represent a sequence of Franconian sediments that lapped

northwestward onto the margins of the ancestral Central Kansas Uplift. However,

Dresbachian strata are present in western Kansas (Chenoweth, 1968). Basal Sauk

relations are not known with certainty in Nebraska, although Dresbachian units

present in western Iowa have been tentatively correlated into eastern Nebraska

(Carlson, 1969). The late Dresbachian was marked by a significant regressive

event, and a disconformity (Sauk II/Sauk III boundary; Palmer, 1981) apparently

formed at the top of the Dresbachian interval over large portions of the central

midcontinent.

In a general sense, younger Sauk depositional cycles resemble the Dresbach

ian pattern, although carbonate-dominated facies are more widespread during the

Trempealeauan and Canadian. The Franconian-Trempealeauan cycle was initiated

with deposition of a basal sandstone interval in Wisconsin, northern Illinois,

Minnesota, and eastern Iowa (Ironton Ss, Wonewoc Fm) and eastern Kansas (Lamotte

or Reagan Ss). Several broad facies tracts characterize subsequent Franconian

deposition: 1) primarily glauconitic sandstones in Wisconsin and adjacent areas

of Minnesota, Iowa, and Illinois (Lone Rock Fm, Franconia Fm); 2) a mixed facies

belt, primarily characterized by siltstone, shale, and dolomite, across much of



Iowa and Missouri (Davis Fm); and 3) carbonate-dominated facies in southwestern

Iowa, eastern Nebraska, western Missouri, and Kansas (Davis Fm, lower "Arbuckle

Gp"). Carbonate-dominated facies expanded across much of Missouri and Iowa dur

ing the late Franconian and earliest Trempealeauan (Derby-Doerun Fms).

Most of the central midcontinent area was covered by a carbonate facies dur

ing the Trempealeauan (St. Lawrence Fm, Potosi Fm). The late Trempealeauan and

earliest Canadian generally marked a period of significant marine offlap during

which sandstone units prograded off the Wisconsin Dome area across much of Minne

sota, Iowa, and northeastern Missouri (Jordan Ss, Momence Ss). Coeval carbonate

and sandy carbonate facies (Eminence Fm) are present across western Iowa, eastern

Nebraska, and much of Missouri, extending westward to the edge of the ancestral

Central Kansas Uplift (Keroher and Kirby, 1948). As reported by many workers,

maximum regression, generally coincident with the Cambrian-Ordovician boundary,

was apparently marked by development of a disconformity over portions of the

central midcontinent.

Lower Ordovician. A widespread sandstone and sandy carbonate interval

probably represents the basal unit of the succeeding Lower Ordovician depositonal

cycle across much of the central midcontinent (upper Jordan and/or basal Oneota

Fm in eastern Iowa, Minnesota, Wisconsin; Gunter Ss in Missouri, western Iowa,

eastern Nebraska, and northeastern Kansas). Relatively pure carbonate deposition

dominated the remainder of the cycle across most of the study area (Oneota Fm in

Minnesota, Wisconsin, Iowa, Illinois; Gasconade Fm in Nebraska, Kansas,

Missouri). These deposits apparently onlapped Precambrian granites in south-

central Kansas (Keroher and Kirby, 1948). The final regressive phase of this

cycle was marked by development of an unconformity over portions of the mid-

continent, especially in the Wisconsin Dome area (Ostrom, 1970) and eastern

Kansas (Keroher and Kirby, 1948). The succeeding cycle was initiated with wide-



spread deposition of a basal sandstone and/or sandy carbonate sequence (New Rich

mond Ss in Wisconsin, Iowa, Minnesota, Illinois; Roubidoux Fm in Missouri,

Nebraska, and Kansas). Roubidoux sediments buried the Precambrian upland surface

in central Kansas (ibid.). Subsequent deposition was dominated by carbonates,

although deposition of sandy carbonate and minor sandstone is noteworthy

(Shakopee Fm in Wisconsin, Minnesota, Iowa, Illinois; Jefferson City-Cotter Fms

in Missouri, Kansas). Later Sauk carbonate and sandy carbonate deposition is

documented in southeastern Missouri (Powell and Smithville Fms), although

equivalent units are absent over most of the central midcontinent due to non-

deposition (?) and/or extensive pre-Tippecanoe erosional stripping.

Sub-Tippecanoe Erosional Surface

A prolonged period of erosion, including the Whiterockian and portions of

the Chazyan and late Canadian, separated deposition of the Sauk Sequence from the

overlying Tippecanoe Sequence over most of the central midcontinent (Witzke,

1980). The vast sheet of Sauk rocks, primarily dolomite, that was deposited over

the area was eroded marginally and around structurally positive features (Wiscon

sin Arch, Southeast Nebraska Arch). The exposed carbonates were subjected to

karstification and valley formation to varying degrees. Prominent karst sink

holes and valleys, up to 200 m deep, are best developed in Kansas (Merriam and

Atkinson, 1956), northern Illinois (Buschbach, 1964), northern and western

Missouri, eastern Iowa, and Wisconsin. The youngest Sauk stratigraphic units are

preserved in the structural depression coinciding with the southern Illinois and

"Ozark basin" area. Sauk strata were erosionally stripped from the crest of the

Southeast Nebraska Arch, where Precambrian crystalline and clastic rocks form the

sub-Tippecanoe surface.

Tippecanoe Sequence

Middle and Upper Ordovician. In general, the initial Whiterockian phases of



Tippecanoe deposition (text fig. 1) were restricted to regions of maximum late

Sauk subsidence. Whiterockian sandy carbonates and sandstones (Everton Fm) were

deposited on the eroded Sauk surface in southeastern Missouri and southern

Illinois. Whiterockian strata also occur as far north as the Oklahoma-Kansas

border area (Oil Creek Fm of Simpson Gp). However, Whiterockian strata were not

deposited over the remainder of the central midcontinent, where erosion remained

the dominant process.

As Middle Ordovician seas onlapped into the central midcontinent area during

the Chazyan, the underlying erosion surface was buried beneath a time-

transgressive sheet of St. Peter Sandstone (Dapples, 1955). Sporadically dis

tributed sections of exceptionally thick (greater than 200 m) St. Peter Sandstone

represent clastic-filled karst features and valleys on the pre-Tippecanoe erosion

surface (Witzke, 1980). The great purity and maturity of the St. Peter quartz

arenites over much of the midcontinent suggest that a substantial portion of the

St. Peter sand was derived from earlier generation Sauk and Keweenawan quartz

sandstones. The St. Peter shoreline spread onto the margins of the Transconti

nental Arch and across most or all of the Southeast Nebraska Arch, apparently by

the late Chazyan or early Blackriveran. In those areas (i.e., Nebraska, north

western Iowa, and southeastern Minnesota), the St. Peter Sandstone is

locally argillaceous and silty with interbedded fossiliferous brown and green

shales (ibid.). The St. Peter includes shales and oolitic ironstones across por

tions of northern Kansas (Leatherock, 1945) and southeastern Nebraska. It

extends northwestward from north-central Nebraska (Carlson, 1969) to join with

basal Winnipeg elastics in South Dakota. These Middle Ordovician deposits trend

directly across the Transcontinental Arch paralleling the southern margin of the

Sioux Ridge along the Nebraska Sag (PI. 3, fig. 3).

An extensive sandstone body, probably of Blackriveran age, that trends



across northern Illinois, southeastern Iowa, and northern Missouri is termed the

Starved Rock Sandstone (Fraser, 1976). The thin Glenwood Shale unit interfingers

with the Starved Rock Sandstone on its northern margin and trends across Iowa,

Minnesota, and Wisconsin. Contemporaneous carbonate and evaporite facies

(Joachim Fm) are noted south of the Starved Rock Sandstone body in Illinois and

eastern Missouri•

Marine carbonate sediments were deposited across the eastern portion of the

central midcontinent following St. Peter-Glenwood deposition (Plattin Ls, Platte-

ville Fm). Correlative strata in the western and northern portions of the study

area include significant quantities of terrigenous clastic material, commonly

green or brown shales and varying quantities of sandstone, reflecting proximity

to source terranes along the Transcontinental Arch and in portions of Kansas

(Leatherock, 1945; Sloan, 1972; Witzke, 1980). The overlying Decorah Formation

undergoes significant facies variations in the central midcontinent: 1) the

Decorah in northwestern Iowa and Minnesota is primarily a shale unit with

scattered limestone interbeds; 2) the Decorah in eastern Iowa and Missouri is

primarily a carbonate unit with some shale; 3) Decorah or upper Simpson strata in

portions of southwestern Iowa, Nebraska, and Kansas include carbonates, shales,

and sandstones. The northwestward increase in Decorah shale thicknesses in Iowa

and Minnesota identifies the Transcontinental Arch as the source area (Witzke,

1980). Decorah sedimentation was succeeded by "Trentonian" carbonate deposition

across the central midcontinent (Galena Gp, Kimmswick Ls, "Viola" Fm). The

Decorah-Galena boundary is a diachronous facies transition in Iowa and Minnesota,

and the upper Decorah in the region bordering the Transcontinental Arch is a

contemporaneous facies to lower Galena carbonates in areas away from the arch

(ibid.).

Continued marine transgression during the late Middle and early Late Ordo-



vician inundated vast areas of the midcontinent. "Viola" carbonates overstepped

the Simpson edge in northwestern Kansas (Cole, 1975) and portions of the ances

tral Central Kansas Uplift. Large areas of the Transcontinental Arch also were

submerged, reducing clastic influx to the epeiric sea and allowing Galena carbon

ate sedimentation to become more prevalent. Ross (1976, p. 91) termed this "the

greatest inundation in North American history." Galena-"Viola" carbonate strata

are generally characterized by skeletal wackestones/packstones and/or fossilifer-

ous dolomites containing varying quantities of chert. For the most part, complex

dolomite and limestone facies patterns do not parallel depositional patterns but

are secondary diagenetic features (Witzke, 1983a).

A general reorganization of Sauk structural patterns occurred during the

Middle Ordovician. The southward thickening of Platteville/Plattin strata in

Illinois and eastern Missouri resembles Sauk isopach trends, although the north

ward trending axis of Sauk thickening (Hollandale Embayment) was disrupted by

Middle and Late Ordovician uplift of a broad arch trending north from the Ozark

region across northern Missouri and southeastern Iowa (PI. 3, fig. 3) termed the

Northeast Missouri Arch (Bunker, 1981). However, the northern extension of the

Hollandale Embayment in northeastern Iowa and southern Minnesota remained an area

of increased subsidence during the Middle Ordovician, where the thickest se

quences of Galena Group strata in the central midcontinent are preserved (Witzke,

1983a). Positive structural elements, the Transcontinental and Wisconsin arches,

flanked the embayment. Middle Ordovician strata thin southwestward across Iowa

approaching the area of the Southeast Nebraska Arch. Pronounced upwarping of the

Ozark Uplift during deposition of the Galena/Kimmswick sequence resulted in

erosional beveling of these carbonate strata around the uplift prior to Maquoketa

deposition (Templeton and Willman, 1963). The emergence of the Ozark Uplift

during Tippecanoe deposition marked the destruction of the older Sauk "Ozark
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basin." Tippecanoe development of the Chautauqua and Northeast Missouri arches

was generally coincident with that of the Ozark Uplift. "Viola" strata thin

toward the Chautauqua Arch in Kansas. Numerous bentonites in the Middle

Ordovician sequence of Minnesota, Iowa, Illinois, and Missouri (Kolata, 1983)

originated from volcanic sources associated with the newly emerging Taconic

Mountains, presaging Upper Ordovician influx of Taconic-derived elastics into the

midcontinent.

Carbonate depositional patterns became disrupted during the middle and late

Cincinnatian, and Maquoketa shales spread across the central midcontinent area.

Lower Maquoketa shale facies in eastern Iowa and Illinois are primarily brown

organic-rich shales with interbedded carbonates and phosphorites. This shale

facies is replaced to the west and northwest by carbonate-dominated facies.

Maquoketa shale-dominated facies progressively overstep Maquoketa carbonate-

dominated facies westward in Iowa (Witzke, 1983a). The "Viola" carbonate se

quence in Kansas and adjacent areas is not an exact chronostratigraphic equiv

alent of the Iowa-Illinois Galena Group carbonate sequence but includes younger

strata (ibid.; Adler et al., 1971). The westward spread of shale facies over

carbonate facies during Maquoketa deposition in the midcontinent probably

represents the distal progradation of clastic sediment from Taconic sources.

However, additional clastic sources within the central midcontinent significantly

modified this general picture; sand and mud were shed off areas on the Ozark

Uplift and Transcontinental Arch (Witzke, 1980).

Structural patterns developed during or after Maquoketa deposition resemble

those of the Middle Ordovician, although new features are evident. In particu

lar, the area of the Southeast Nebraska Arch subsided during Maquoketa deposition

as evidenced by southwestward thickening of Maquoketa strata in Iowa toward the

former arch. The initiation of increased subsidence in the vicinity of the
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Southeast Nebraska Arch and in eastern Iowa during the late Middle and Late Ordo

vician marked the early development of the North Kansas and East-Central Iowa

basins.

The youngest Ordovician deposits in the midcontinent occur at the top of the

Maquoketa interval. Uppermost Ordovician sediments in Iowa include red silty

shales with scattered oolitic ironstones, whereas skeletal and oolitic limestones

are present in Missouri. An erosional unconformity, with up to 50 m of relief in

eastern Iowa, separates Ordovician and Silurian strata over the midcontinent

area, which probably developed during a major glacial eustatic drop in sea level

(Sheehan, 1978).

Silurian. Outside of the Illinois Basin area, Silurian strata in the

central midcontinent are restricted to the East-Central Iowa and North Kansas

basins and the structural sag that connects these two regions (PI. 3, fig. 4).

Silurian carbonate deposition undoubtedly extended far beyond the present-day

Silurian edge across much or all of the Transcontinental (Chronic et al., 1969;

Colville and Sheehan, 1983) and Chautauqua arches. However Silurian strata were

removed over vast areas of the midcontinent during a prolonged period of pre-

Kaskaskia nondeposition and erosion which lasted some 40 million years.

The initial transgression of Silurian seas into the midcontinent proceeded

from the Illinois area into eastern Iowa, where shaly carbonates were deposited

in topographic depressions on the Maquoketa Shale surface during the early Llan

doverian. However, Silurian deposition across central Iowa and the North Kansas

Basin area did not begin until the middle to late Llandoverian (Carlson and

Boucot, 1967; Witzke, 1981), and late Llandoverian strata overlie the Ordovician

surface in eastern Missouri (Thompson and Satterfield, 1975). Subsequent

Llandoverian-early Wenlockian marine carbonate depositional patterns and bio-

facies distributions across the midcontinent area were strongly influenced by
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relative changes in sea level (Johnson, 1980; Witzke, 1983b). Level-bottom

marine carbonate environments were locally modified in eastern Iowa during por

tions of the late Llandoverian and Wenlockian as carbonate mound facies (bio-

herms) developed on the sea bottom (Witzke, 1983b). Carbonate mound complexes

achieved dimensions up to 2.5 km in diameter in Iowa.

A profound change in carbonate depositional patterns occurred during the

middle to late Wenlockian in the East-Central Iowa Basin area, as open-marine

carbonate environments were replaced by restricted-marine subtidal laminated car

bonate environments (Philcox, 1972; Witzke, 1983b). Open-marine epeiric circula

tion patterns became disrupted as the Late Silurian marine offlap proceeded,

creating conditions of increased salinity within the basin. Late Wenlockian-

Ludlovian carbonate mound facies containing abundant low-diversity invertebrate

faunas interfinger with laminated carbonate facies in eastern Iowa (Witzke,

1983b).

Silurian stratigraphy in the North Kansas Basin area is poorly known, al

though lithologic and biostratigraphic similarities with eastern Iowa provide the

most consistent comparisons. Ireland (1967) proposed a correlation of the North

Kansas Basin Silurian section with the Silurian section in Oklahoma, although his

correlations are inconsistent with the brachiopod biostratigraphy established in

Nebraska (Carlson and Boucot, 1967; Witzke, 1981). The Chautauqua Arch apparent

ly served as an effective barrier separating Silurian carbonate environments in

the North Kansas Basin area from Silurian carbonate/clastic environments in

Oklahoma. Close similarities between the Silurian sequences in the North Kansas

and East-Central Iowa basins suggest that similar structural and depositional

conditions existed in both basins. Maximum thicknesses of Silurian rocks in the

central areas of both basins are similar (150 m; PI. 3, fig. 4), and thickening

of individual Silurian rock units towards the center of each basin is documented

13



(Ireland, 1967; Witzke, 1981, 1983b). The absence of Silurian strata in the

central midcontinent across the Transcontinental Arch, ancestral Central Kansas

Uplift, Northeast Missouri Arch, Chautauqua Arch, and Ozark Uplift suggests that

these features were probably positive structural elements during Silurian

deposition as well as the subsequent pre-Middle Devonian erosional episode.

Pre-Kaskaskia Erosional Episode

Prior to the initial Kaskaskia transgression into the central midcontinent,

an extensive period of erosion ensued during which several hundred meters of Tip

pecanoe, Sauk, and Precambrian rocks were stripped from portions of the continen

tal interior. The pre-Kaskaskia paleogeologic map (PI. 3, fig. 5) reflects the

pattern of basins and arches that had developed prior to Kaskaskia deposition.

Because of extensive sub-Kaskaskia erosional stripping, Silurian rocks were pre

served only in areas of maximum structural subsidence. The general distribution

of Silurian rocks (PI. 3, fig. 4) depicts a northeast to southwest trending syn

clinal trough across the central midcontinent coincident in part to the south

eastern margin of the MRS. This depressed area, as discussed previously, has

been subdivided into the North Kansas and the East-Central Iowa basins. Other

prominent structural features evident on the pre-Kaskaskia paleogeologic map (PI.

3, fig. 5) include the Ozark Uplift, Northeast Missouri Arch, Chautauqua Arch,

ancestral Central Kansas Uplift, and Transcontinental Arch.

Pre-Kaskaskia paleotopographic relief developed from differential erosional

characteristics of truncated pre-Kaskaskia strata, in particular between Silurian

carbonates and Upper Ordovician shales. Erosional escarpments of low relief (10-

30 m) developed along the pre-Kaskaskia erosional margins of the Silurian, and

probably served as effective barriers to open-marine circulation in the initial

transgressing Kaskaskia seas (Bunker et al., 1983, 1985).

14



Kaskaskia Sequence

The Kaskaskia Sequence (text fig. 1) in the central midcontinent region in-

-y eludes strata ranging in age from Middle Devonian (Late Eifelian: Hilpman, 1969;

Klapper and Barrick, 1983; Bunker et al., 1985) to late Middle Mississippian

(Meramecian). The structural framework influencing early Kaskaskia deposition in

this region was largely inherited, with some variations, from that which de

veloped during the late Tippecanoe.

Devonian. Collinson and James (1969) considered the Middle Devonian rocks

of eastern Iowa and northwestern Illinois to be the southeasternmost transgres-

sive deposits of a vast seaway that extended northwestward into western Canada.

Recent biostratigraphic (Klapper and Barrick, 1983) and lithostratigraphic

(Bunker et al., 1983, 1985; Witzke and Bunker, 1984) interpretations of the

Middle Devonian rocks in north-central Iowa and south-central Minnesota indicate

that open-marine carbonate environments (Spillville Fm) characterized this region

during the Late Eifelian. These Eifelian units are physically separated from

correlative restricted-marine carbonate units (Otis Fm) in the East-Central Iowa

Basin area (Bunker et al., 1983, 1985) by a paleoescarpment of Silurian carbonate

strata in the northern part of the East-Central Iowa Basin. Upper Eifelian rocks

are absent elsewhere across central Iowa, although probable upper Eifelian strata
b

are present in the North Kansas Basin area (Hilpman, 1969). In general, south

ward transgressing seas expanded into the central midcontinent area during the

Late Eifelian and reoccupied the two major Tippecanoe basinal areas. However,

there was apparently no direct Late Eifelian seaway connection between the North

Kansas and East-Central Iowa basins across central Iowa. The Nebraska Sag

probably served as a seaway connection between the Williston and the North Kansas

basins during the Middle Devonian onlap. Seaway connections may have been

established around the northern flank of the Sioux Ridge with the East-Central
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Iowa and Williston basins. Biogeographic similarities between basal Middle

Devonian rocks in northeastern Iowa and eastern Wisconsin (Klapper and Barrick,

1983) suggest that seaway connections with the Michigan Basin were also probably

established across the area of the Wisconsin Arch. However, extensive post-

Devonian erosion has removed Devonian strata from the Transcontinental and

Wisconsin arches, obscuring physical relationships.

Successive expansion of the Middle Devonian seaway, into the central mid-

continent region, is recorded by a series of trangressive-regressive depositional

cycles (Witzke and Bunker, 1984; Witzke et al., 1985), which are similar in

timing to those noted in Manitoba (Norris et al., 1982),and complementary to

those noted across Euramerica (Johnson et al., 1985). The first cycle, as noted,

spread Late Eifelian carbonate (Spillville-Otis Fms) environments across portions

of the East-Central Iowa and North Kansas basins. The upper regressive part of

this cycle (Wapsipinicon Fm) is characterized by an extensive carbonate and

gypsum-anhydrite evaporite sequence (Dorheim and Campbell, 1958; Sendlein, 1964,

1968, 1972) which is preserved in the subsurface of south-central and south

eastern Iowa. Brecciated carbonates, textures primarily developed by evaporite

solution collapse, characterize this interval in the outcrop area of eastern and

northeastern Iowa (Norton, 1920; Bunker et al., 1983, 1985).

Late Givetian-Early Frasnian (Cedar Valley-Shell Rock Fms) cyclic sedimenta

tion in the central midcontinent region is similarly characterized by fossilifer-

ous dolomitic intervals at the base of each cycle, recording deposition in open-

marine carbonate shelf environments during each successive transgressive phase.

Laminated, intraclastic, and brecciated carbonates in the upper part of each

cycle record deposition in shallow, restricted subtidal and tidal flat settings

during each regressive phase (Witzke and Bunker, 1984). Evaporites (gypsum-

anhydrite) laterally equivalent to each of the regressive phases are present in
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the subsurface of central Iowa. The lower Cedar Valley Formation represents a

widespread transgression (Taghanic Onlap, Johnson, 1970; Klapper and Johnson,

1980) which marked the end of provincialism among brachiopods, corals, and

trilobites across the North American continent. The Sangamon Arch in central

Illinois, which initially developed during the Middle Devonian (Whiting and

Stevenson, 1965), together with the Ozark Uplift and the Chautauqua Arch, formed

the southern margin of the merging North Kansas and East-Central Iowa basins.

Cedar Valley carbonate deposition along the southern margin of the developing

Iowa Basin was influenced by the influx of Ozark-derived elastics (Hoing Sand

stone) across central and northern Missouri and portions of southern Iowa

(Fraunfelter, 1967; Schumacher, 1976).

Prior to the Late Frasnian transgression across the central midcontinent, a

period of erosion and karst development occurred over much of the area. Sink

holes and caverns developed in the Middle Devonian and Silurian carbonates, and

stratigraphic leaks of Upper Devonian shale (Independence Shale of eastern Iowa,

Urban, 1972; Klapper, 1975) filled these karst features. Lee (1956, p. 65) de

scribed a pre-Chattanooga valley (McPherson Valley) with paleotopographic relief

of more than 60 m in south-central Kansas, as well as the presence of several

Middle Devonian outliers along the western margin of the North Kansas Basin.

However, marine and restricted-marine carbonates and evaporites were deposited in

central Iowa (Iowa Basin) coincident with erosion in areas to the southeast and

west.

Significant changes in structural and depositional patterns occurred prior

to and/or during the Late Devonian (Late Frasnian-Famennian) transgression into

the central midcontinent. While earlier Middle Devonian marine incursions appear

to have spread from northern and eastern seaways, the Late Devonian transgression

apparently came from a seaway to the southeast. The Upper Devonian in this
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region can be grouped into three broad northeasterly trending megafacies. The

southeasternmost facies (New Albany Shale Group, Cluff et al., 1981) consists

predominantly of gray and black to brownish black organic-rich shales. The New

Albany Shale Group grades laterally to the northwest into gray shales which in

turn grade to and are interbedded with carbonates and green shales (Yellow Spring

Group, Dorheim et al., 1969). Biostratigraphic investigations of Devonian

carbonates in the central midcontinent have also revealed that strata previously

classified as Middle Devonian (Collinson, 1967; Adler et al., 1971) are, in

part, a Late Devonian carbonate lithosome (Klug and Tynan, 1981; Klug, 1982) as

earlier suggested by Carlson (1963, p. 35). The northwesternmost megafacies is a

sparsely fossiliferous carbonate-dominated interval, with abundant solution

collapse(?) breccias, which progressively onlapped and overstepped truncated

Tippecanoe rocks along the southeastern flank of the Transcontinental Arch.

Laminated brown shales, containing a probable Givetian-Frasnian freshwater fish

fauna, overlie Cambrian and Precambrian rocks near the Sioux Ridge in northwest

Iowa (note outlier on PI. 3, fig. 6).

The total Devonian isopach map (PI. 3, fig. 6) does not reflect the in

dividual histories of the separate Middle and Late Devonian structural and depo

sitional regimes. However, the isopach map does suggest a merging of the North

Kansas and East-Central Iowa basins into one depositional basin located in

central Iowa (i.e., the Iowa Basin), sometime during the late Middle to Late

Devonian. The axis of this northeasterly trending elongated basinal feature

occupies a position coincident to the southeastern margin of the MRS suggesting

probable structural influence on both Middle and Upper Devonian sedimentation.

Structural movements along the northwest-southeast trending Lincoln Fold System

in northeastern Missouri and southeastern Iowa locally influenced Devonian

depositional and erosional patterns (McQueen et al., 1961) in this area.
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Mississippian. Following a regressive offlap at the end of the Devonian,

Mississippian marine environments transgressed across a region of low erosional

relief. The basal sequence of Mississippian rocks (Kinderhookian Series) in the

midcontinent is dominated by marine carbonate deposits, although significant

quantities of Kinderhookian shale and siltstone occur in southeastern Iowa and

northeastern Missouri. Mississippian onlap along the flanks of the Trans

continental Arch and the Cambridge Arch-Central Kansas Uplift has been described

for the northern and western parts of the study area (Carlson, 1963, 1979; Goebel

and Stewart, 1979). Intermittent seaway connections with the Williston Basin

area were probably established through the area of the Nebraska Sag. Similar

onlap is also noted around the flanks of the Ozark Uplift (Thompson, 1979)

indicating that this area remained a positive structural feature during the

Mississippian.

The Mississippian is typically subdivided into four widely recognized

series—the Kinderhookian, Osagian, Meramecian, and Chesterian. Many problems

involving time-stratigraphic relationships, vertical and lateral facies varia

tions, and the extent of regional and local unconformities have precluded mean

ingful synthesis of the Mississippian System across the entire central midconti

nent area. For example, disconformable relationships between Kinderhookian and

Osagean strata in southeastern Iowa attest to late Kinderhookian uplift and ero

sion. Whether this unconformity is of local or regional significance is not well

established. Laudon (1937) used this disconformity in southeastern Iowa to

explain the apparent transgressive overlap of crinoid zones within the Burlington

Limestone (Osagean). Lithostratigraphic relationships (Harris and Parker, 1964)

also suggest that successively younger members of the Burlington progressively

overlie younger units of the "Kinderhookian Series" north and west from south

eastern Iowa. Parker (1973), however, suggested that a facies relationship may
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exist between the lower Burlington and portions of the Hampton (formerly con

sidered "Kinderhookian") in central Iowa. Recent biostratigraphic investigations

(Glenister and Sixt, 1982; Baxter and Brenkle, 1983) have now assigned portions

of the Hampton and Gilmore City formations in central Iowa to the Early Osagean.

Osagean rocks were deposited during a major transgressive episode in the

midcontinent. Shallow seas with normal salinities and a diverse assemblage of

benthic invertebrates characterized most of this interval. The Central Kansas

Uplift was overlapped and the Hugoton Embayment of southwestern Kansas actively

subsided (Goebel and Stewart, 1979), connecting southward into the Anadarko

Basin.

Meramecian strata in the central midcontinent include carbonates, evapor

ites, shales, and sandstones deposited in various open-marine and restricted-

marine environments during several transgressive-regressive cycles. A major re

gressive interval during the Meramecian resulted in the development of an erosion

surface within the western Kansas sequence (ibid.). Restriction of the Merame

cian sea in south-central Iowa permitted development of a gypsum-anhydrite

evaporite sequence (Carlson, 1979). Chesterian rocks are generally absent from

the region, being restricted to the southern basins. Eroded Chesterian rocks

occur within the Hugoton Embayment, and it seems probable that Chesterian

deposition may have extended across other portions of the central midcontinent.

However, pre-Absaroka erosion has removed any evidence of Chesterian rocks across

most of the area.

The present thickness of Mississippian rocks in the midcontinent (PI. 3,

fig. 7) reflects extensive pre-Absaroka uplift and erosion, especially along the

trend of the Nemaha Uplift. Nevertheless, the isopach map outlines several areas

of increased Mississippian subsidence. 1) The Hugoton Embayment of western

Kansas contains the thickest sequence of Mississippian strata in the central mid-
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continent. However, because of unresolved stratigraphic problems, the thickness

patterns shown include some Upper Devonian strata (Hilpman, 1969; Goebel and

Stewart, 1979). 2) Mississippian thickening in northeast Kansas and adjacent

Missouri reflects development of a shallow basin which Lee (1946) termed the

Ancestral Forest City Basin. 3) The thick Mississippian section in western Iowa

is informally included in the "Massena basin." This basin coincides with the

western extent of the Late Devonian Iowa Basin. 4) A synclinal depression in

northeastern Missouri and southern Iowa is also apparent on the Mississippian

isopach map, and is informally termed the "Appanoose trough." This trough is a

major structural low associated with the Lincoln Fold System (PI. 3, Fig. 9),

indicating active development of Lincoln Fold structures during the Mississip

pian. Meramecian evaporites are preserved within this feature.

Pre-Absaroka Erosion Cycle

The pre-Absaroka unconformity reflects a profound change in the tectonic

framework of the central midcontinent. Renewed uplift of older positive

features, and erosional stripping of uplifted strata led to the development of a

geologically complex land surface. Early to Middle Pennsylvanian sediments on

lapped and overstepped the erosionally beveled edges of Kaskaskia through Sauk

units, and rest on Precambrian basement rocks along the crest of some pre-

Absaroka uplifts. The pre-Absaroka paleogeologic map illustrates this complex

erosion surface (PI. 3, fig. 8).

The Nemaha Uplift, a reactivation of the older (Sauk) Southeast Nebraska

Arch, is apparent at the center of the map (PI. 3, fig. 8). Regional beveling

removed Kaskaskia and Tippecanoe strata, exposing Precambrian crystalline rocks

along the crest of the uplift. Uplift and erosional beveling is also noted along

the trend of the Cambridge Arch-Central Kansas Uplift. Lower Tippecanoe and

upper Kaskaskia rocks are preserved along the axis of the Nebraska Sag. In east-
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central Iowa and northwestern Illinois, uplift of the Savanna-Sabula Anticlinal

System (PI. 3, fig. 9) and faulting along the Plum River Fault Zone (PI. 3, fig.

8) is indicated by regional beveling of Kaskaskia and upper Tippecanoe rocks

along the crest of the anticline (Bunker et al., 1985). The East-Central Iowa

Basin, developed during Tippecanoe-lower Kaskaskia deposition, had been uplifted

and erosionally beveled to the northeast prior to Absaroka deposition. Continued

presence of the Ozark Uplift is indicated by erosional stripping of Kaskaskia and

Tippecanoe strata, so that Pennsylvanian rocks of the region rest upon Lower

Ordovician strata.

Absaroka Sequence

The Absaroka Sequence (text fig. 1) in the central midcontinent consists

primarily of strata ranging in age from Middle Pennsylvanian to Late Permian.

Triassic strata are present only along the extreme western margin of the study

area. Late Chesterian rocks are restricted to the Illinois and Anadarko basins,

but possible stratigraphic leaks have been noted within karstified Kaskaskia

rocks in the central midcontinent (Urban, 1971, 1972; Goebel and Stewart, 1979).

Pennsylvanian. Lower Pennsylvanian (Morrowan) rocks in the study area are

known from the Hugoton Embayment of southwestern Kansas and the Illinois Basin.

Nonmarine Morrowan strata have also been identified in east-central Iowa and

northern Illinois (Kosanke et al., 1960; Fitzgerald, 1977) along the southern

flank of the Savanna-Sabula Anticlinal System and the crest of the Mississippi

River Arch (Bunker et al., 1985). Basal Pennsylvanian strata in the central area

of the Forest City Basin have not been dated, and possible Morrowan strata may be

included (Wanless, 1975, p. 99).

Middle Pennsylvanian (Atokan-Desmoinesian) strata (Cherokee and Marmaton

Gps) cover much of the central midcontinent, but are absent across structural

highs along the trend of the Cambridge Arch-Central Kansas Uplift and Nemaha Up-
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lift (PI. 3, fig. 9). Lower and Middle Pennsylvanian strata are dominated by

nonmarine clastic deposits, although marine shale and limestone units occur with

in the sequence. Clastic sediments of the Cherokee Group are primarily shales

and mudstones with locally abundant sandstone and siltstone units. Coal seams,

locally thick enough to be of economic interest, occur within the Cherokee Group,

especially in the eastern part of the study area. Lower Cherokee strata in the

central portion of the Forest City Basin are dominated by black and gray shale

with minor sandstone. However, the upper Cherokee includes beds of coarse

grained arkosic sandstone, possibly derived from Precambrian granites on the

crest of the Nemaha Uplift during the late Middle Pennsylvanian (Lee, 1943,

1956). In the Salina Basin, Cherokee strata are dominated by shale and sand

stone; coal beds, although present, are less significant than in the basins to

the east. Gray silty shales are interstratified with red shale beds, in particu

lar along the flanks of the Central Kansas Uplift (Lee, 1956). Compared to the

lower Cherokee, upper Cherokee and Marmaton strata show increasing evidence of

marine deposition across the midcontinent, including prominent cyclic marine

shale-limestone units.

Much of subsequent Absaroka Sequence deposition was characterized by cyclic

patterns (cyclothems) of marine and nonmarine sedimentation, apparently in re

sponse to eustatic sea level fluctuations in the midcontinent. Eustatic fluctua

tions may relate to the waxing and waning of Gondwanan glaciers during the Late

Mississippian through Middle Permian (Crowell, 1978; Heckel, 1980). The ideal-

Text Figure #2 near here

ized "Kansas cyclothem " (text fig. 2), which characterizes many Upper Pennsyl

vanian cyclic units in the midcontinent, includes four basic components (Heckel,

1977): 1) a thin basal transgressive limestone; 2) a phosphatic black fissile

offshore marine shale (maximum transgression); 3) a thick regressive limestone;
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and 4) a sandy nearshore and nonmarine shale locally with sandstone and coal

(maximum regression). However, not all cyclothems contain the four basic

components. In some cyclothems the basal transgressive limestone is extremely

thin to absent and the black marine shale interval directly overlies coal beds or

nearshore shale facies ("Illinois cyclothem;" Heckel, 1980). The lack of the

black marine shale in some cycles suggests that the magnitudes of eustatic sea

level fluctuations varied. Regional facies variations are noted within

individual cyclothems, including carbonate mound and oolite shoal facies (Heckel

and Cocke, 1969; Watney, 1980). Regional examination of the Kansas City Group in

western Kansas indicates that the entire shelf was exposed repeatedly during late

regression in each cycle (Watney, 1984). The configuration of the shelf during

deposition of these cycles was controlled by continued though subtle uplift of

the Central Kansas Uplift and its extension to the south, the Pratt Anticline.

Subtle flexures along the platform were sometimes loci for the formation of ooid

shoals, when waves and currents were focused on these areas during the late

regressive phases of some cycles (ibid.).

Middle Pennsylvanian faulting along the Humboldt Fault Zone (PI. 3, fig. 1),

apparently contemporaneous with the Ouachita-Marathon Orogeny (Kluth and Coney,

1981), gave rise to the Nemaha Uplift, in part a reactivation of the older (Sauk)

Southeast Nebraska Arch. The Nemaha Uplift bisected the region of the late

Tippecanoe North Kansas Basin and cut off the southwestern extension of the mid-

Kaskaskia Iowa Basin. Up to 320 m of pre-Missourian Pennsylvanian rocks

accumulated in the structural depression east of the Humboldt Fault Zone (PI. 3,

fig. 9). This area constitutes the Forest City Basin as defined by Lee (1943,

1946). Maximum differential subsidence of the Forest City Basin was essentially

contemporaneous with the rising Nemaha Uplift. The Nemaha Uplift forms the

eastern margins of two basins created during this period of increased structural
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activity: 1) the Salina Basin of north-central Kansas and south-central

Nebraska, and 2) the Sedgwick Basin, a structural depression in south-central

Kansas that plunges southward to join the Anadarko Basin of Oklahoma. West of

the Central Kansas Uplift, the Hugoton Embayment continued to be a region of in

creased subsidence during the Pennsylvanian.

Eastward thinning of Middle Pennsylvanian strata from the Forest City Basin

toward a broad outcrop area in northeastern Missouri indicates the presence of a

broad northward trending arch, apparently the Absaroka expression of the older

pre-Kaskaskia Northeast Missouri Arch (PI. 3, fig. 5). The Mississippi River

Arch (Howell, 1935) and the Lincoln Fold System (McQueen et al., 1961) occur

along the present day structural crest of this broad feature. The Lincoln Fold,

active during the Mississippian, continued as a prominent structural feature dur

ing the Middle Pennsylvanian (Searight and Searight, 1961). The Mississippi

River Arch, which developed during the Middle Pennsylvanian, apparently formed

concurrently with maximum subsidence of the Forest City Basin (Bunker et al.,

1985). Pennsylvanian clastic source areas included four general regions: 1)

the Ancestral Rocky Mountains to the west, 2) the Marathon-Ouachita Mountains to

the south, 3) Canadian Shield sources to the north, and 4) alluvial-deltaic sedi

ments that prograded into the midcontinent from Appalachian sources.

Differential basinal subsidence of the Forest City and Salina basins de

creased during the Late Pennsylvanian. The Nemaha Uplift and Central Kansas Up

lift continued to stand in mild positive relief until overlapped by the Kansas

City Group (post-Hertha; Lee, 1943, 1946, 1956). Although prominent Middle

Pennsylvanian structural features continued to influence Late Pennsylvanian depo

sition, the Late Pennsylvanian was marked by more subdued structural patterns in

the eastern and central portions of the study area. In contrast with Lower and

Middle Pennsylvanian units, the widespread lateral continuity of members within
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the Upper Pennsylvanian cyclothems reflects relative structural stability across

much of the midcontinent.

Permian. Permian strata occur across much of Kansas and Nebraska, but are

generally absent in the study area east of the Missouri River. Permian strata

thicken to the west and southwest in the central midcontinent, reaching thick

nesses in excess of 1000 m in portions of southwestern Kansas (Peterson, 1980).

Lower Permian (Wolfcampian) strata (Admire, Council Grove, Chase Gps) include a

series of limestone/shale cyclothemic units similar to those noted in the Upper

Pennsylvanian (Mudge and Yochelson, 1962). Gypsum units also occur within th,e

Wolfcampian sequence (Burchett, 1970). Younger Permian strata (Leonardian,

Guadalupian), included in the Sumner Group, Nippewalla Group, and Whitehorse

Formation in Kansas, are characterized by a thick sequence of shale/sandstone

redbeds and evaporites (gypsum, anhydrite, and halite) with some carbonate units.

More than 400 m of evaporitic deposits occur within the redbed sequence in

portions of southwestern Kansas (Merriam, 1963).

Permian structural patterns in the midcontinent strongly influenced Permian

deposition. Early Permian subsidence in the Salina Basin and Hugoton Embayment

areas generally resembled Pennsylvanian patterns. Structural reorganization of

these patterns occurred during the Leonardian-Guadalupian as "arching of the

Central Kansas uplift ceased" and "the areas of the Salina basin and Central Kan

sas uplift began to be tilted as a whole toward the southwest into the Hugoton

embayment" (Lee, 1956, p. 157). In addition, a south-plunging anticline in west

ern Kansas, the Oakley Anticline, developed at that time within the Hugoton Em

bayment area (Merriam, 1963). The Hugoton Embayment area merged with the

Anadarko Basin to the south and extended westward to the Las Animas Arch, which

extended northeastward from the Apishipa Uplift in southeastern Colorado into

southwestern Nebraska (Rascoe, 1978). This arch had a pronounced effect on
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sedimentation during the Lower Permian, controlling carbonate and evaporite

deposition on its flanks. Farther west the relatively shallow Denver Basin

spread to the eastern flanks of the Ancestral Rocky Mountain source areas in

Colorado. Although the youngest strata included in the Absaroka Sequence across

most of the central midcontinent are Guadalupian in age, Triassic strata (Dockum

Gp) are known in a small area of southwestern Kansas. Deposition of the non-

marine Dockum Group was largely controlled by structural settings inherited from

relict Late Paleozoic basins (McGowen et al., 1983).

Sub-Zuni Erosional Surface

Upper Jurassic and Cretaceous strata overlie the sub-Zuni erosional surface

in the central midcontinent. The Paleozoic sequence is progressively beveled

beneath Zuni rocks across northwestern Iowa and northeastern Nebraska in the

direction of the Sioux Ridge (PI. 3, fig. 10), where up to 100 m of relief is

developed across strike-oriented Cretaceous valleys (Witzke et al., 1983). Jur

assic strata overlie Permian rocks in western Kansas and central Nebraska, al

though Jurassic strata truncate the Pennsylvanian sequence and rest directly on

Precambrian basement rocks in eastern South Dakota (PI. 3, fig. 10). Cretaceous

strata overstep the eroded Jurassic edge and overlie the Precambrian surface

across eastern South Dakota and western Minnesota. Cretaceous outliers in

eastern Minnesota, Iowa, and Wisconsin rest on progressively older Paleozoic

units in the direction of the Wisconsin Dome. In general, the sub-Zuni erosional

surface reflects the position of positive structural and topographic features:

1) Wisconsin Dome, 2) Transcontinental Arch (and the included Sioux Ridge), and

3) an upland area of Precambrian rocks in western Minnesota and eastern South

Dakota.
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Zuni Sequence

Jurassic. Zuni deposition in the central midcontinent was initiated during

the Late Jurassic, generally coincident with the eastward encroachment of the

"Sundance Sea." The maximum eastward extent of this epeiric sea is not known,

and much of the preserved Jurassic sequence in Kansas, Nebraska, and central

South Dakota is apparently of nonmarine origin. Except for structurally-

preserved outliers in north-central Iowa (Ft. Dodge Gypsum), Jurassic strata in

the central midcontinent occur entirely in the subsurface. Few stratigraphic

studies have been undertaken on these strata, and correlations remain uncertain.

Nevertheless, the Jurassic of Nebraska-Kansas, which reaches thicknesses in

excess of 60 m, shares its closest similarities with the upper Sundance-Morrison

interval of Wyoming (Condra and Reed, 1943; Merriam, 1955, 1963). The Kansas

Jurassic consists primarily of sandy shale, commonly containing anhydrite and

cherty beds in the lower part and limestone beds in the upper part (ibid.).

Sandstones also occur within the Jurassic interval across Kansas, Nebraska, and

South Dakota; sandstone beds are more abundant to the east in Kansas (ibid.). As

suggested by Brenner (1983), "cratonic siliciclastic sources may have continued

supplying nearshore settings along the eastern margin of the epeiric sea as they

shifted eastward during the Oxfordian." As such, Jurassic sediments in the

central midcontinent probably were deposited as a complex series of nonmarine

fluvial and nearshore marine facies. The abundance of anhydrite in the lower

part of this interval suggests that tidal flat or nearshore restricted-marine

settings were associated with Late Jurassic transgression along the eastern

margin of the seaway.

The economic Ft. Dodge Gypsum of Iowa overlies Mississippian and Middle

Pennsylvanian strata, and is preserved within a structural depression overlying

the Northern Boundary Fault of the MRS. These Jurassic strata occur over 450 km
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east of the present Jurassic edge. The Ft. Dodge Gyspum contains Late Jurassic

palynomorphs (Cross, 1966), and may have been deposited in a "marginal marine

basin" (Bard, 1982). A possible late Jurassic redbed and dolomite interval with

minor gypsum ("Hallock redbeds") also occurs east of the Jurassic edge in north

western Minnesota (Mossier, 1978). These occurrences suggest that considerable

erosional stripping of Jurassic strata occurred prior to burial of the Jurassic

edge beneath Cretaceous sediments.

Cretaceous. Cretaceous strata in the central midcontinent were deposited

along the eastern margin area of the north-south trending Western Interior Sea

way. Cretaceous sedimentation in this area was controlled by several factors in

cluding: 1) "the rise and fall of sea level, and hence base level in fluvial

systems, during five major transgressive-regressive cycles;" 2) relative rates of

terrigenous clastic influx from eastern and western source areas; and 3) the dis

tribution of structural and paleotopographic features, most notably the Trans

continental Arch, Sioux Ridge, Precambrian uplands of Minnesota, and Wisconsin

Dome (Witzke et al., 1983). Cretaceous deposition in the central midcontinent

area was apparently initiated during transgression of the Albian Kiowa-Skull

Creek marine cycle. Albian marine shale facies (Kiowa, Skull Creek Sh) spread

eastward into central Nebraska and Kansas and eastern South Dakota. Correlative

nearshore and nonmarine sandstone deposits are known in Kansas and eastern South

Dakota, and a portion of the lower Dakota fluvial sandstone sequence in eastern

Nebraska and western Iowa may have aggraded as base levels rose during the Kiowa-

Skull Creek cycle (ibid.). Eastern-derived terrigenous clastic sediments pro-

graded westward across the central midcontinent area during the regressive phase

of this marine cycle.

Marine shale facies (Graneros Sh) and offshore pelagic carbonate facies

(Greenhorn Fm) spread eastward across the central midcontinent, progressively
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displacing nearshore and nonmarine facies (Dakota Fm) during the Cenomanian.

This marked the initial transgressive phase of the Greenhorn cycle. Nonmarine and

marine deposition was initiated across the Precambrian upland surface in western

Minnesota during the Cenomanian, although prominent topographic highs, especially

the Sioux Ridge, remained emergent through much or all of the Greenhorn cycle.

By the Turonian, deposition of Greenhorn carbonates had spread across the western

half of the central midcontinent, "reflecting a significant decrease in eastern

clastic influx in the offshore areas as shorelines spread eastward to the Wis

consin dome area" (Witzke et al., 1983, p. 241). Westward progradation of

eastern-derived mud and sand (Carlile Sh) during the middle Turonian, followed by

marine offlap and subaerial erosion, marked the regressive phase of the Greenhorn

cycle. However, a Precambrian granite knob in western Minnesota and eastern

South Dakota was buried by lower Carlile strata, suggesting that sea level con

tinued to rise during the early phases of Carlile deposition (Shurr, 1981).

Following a period of late Turonian-early Coniacian erosion, marine carbon

ate and chalky shale deposition expanded across the western half of the central

midcontinent during the Niobrara marine cycle (late Coniacian-Santonian). East

ern source areas supplied clastic material to the nearshore facies of the lower

Niobrara Formation, including clastic-dominated facies in western Minnesota and

silty-sandy chalk facies in northeast Nebraska and the Sioux Ridge area (Witzke

et al., 1983). A unique sequence of clastic rocks overlain by biogenic siliceous

strata (Split Rock Creek Fm) is restricted to paleovalleys incised into the

flanks of the Sioux Ridge, and correlates, in part, to the Niobrara Formation

(Ludvigson et al., 1981; Witzke et al., 1983; Hammond and Ludvigson, 1985). The

low rate of eastern clastic influx coupled with limited dispersal of western-

derived elastics from Cordilleran sources across the axis of the Transcontinental

Arch (Rice and Shurr, 1983), permitted widespread development of pelagic
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carbonate-dominated facies across much of Nebraska, Kansas, and southeastern

South Dakota. The Niobrara becomes progressively more shaly northwestward from

the arch.

The Pierre Shale of Campanian-Maastrichtian age was deposited disconformably

above Niobrara rocks in the central midcontinent, and reaches thicknesses up to

400 m along the western edge of the study area. Members within the Pierre thin

eastward to their erosional margin. In general, Pierre elastics were derived

from western sources associated with the rising Sevier Orogenic Belt, , although

influx of minor quantities of eastern-derived elastics influenced depositional

patterns along the eastern margin of the Western Interior Seaway (Witzke et al.,

1983). At times when influx of western elastics was reduced, shaly chalk and

chalky shale Pierre facies developed in the eastern portion of the seaway. Lower

Pierre strata, including widespread black shale facies, were deposited during the

Claggett marine cycle. An erosional unconformity was developed around the Sioux

Ridge following Clagget deposition (ibid.). The bulk of Pierre strata was de

posited during the succeeding Bearpaw marine cycle. The Cretaceous seaway with

drew from the continental interior during the regressive phase of this cycle.

Zuni deposition in the central midcontinent occurred within two major struc

tural regimes: 1) a broad, relatively stable eastern platform, and 2) a broad

"hinge" zone area east of the rapidly subsiding basins in the western portion of

the Western Interior (Kauffman, 1977). Zuni stratigraphic units thicken westward

in the area, reflecting subsidence rates in the midcontinent. Numerous benton-

ites in the Zuni sequence originated from western volcanic sources. In the

east, minor structural movements along the Transcontinental Arch and Nemaha Up

lift probably influenced Cretaceous deposition (Witzke et al., 1983). Farther

west, upwarping along the crest of the Chadron Arch-Cambridge Arch was initiated

during or immediately following latest Cretaceous Pierre deposition (Fuenning,
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1942; Merriam, 1963). Zuni structural patterns in the midcontinent were modified

by later "Laramide" epeirogenic movements.

Sub-Cenozoic Erosional Surface and Structure

The central midcontinent Cretaceous sequence is beveled to the south and

east beneath Tertiary strata (PI. 3, fig. 11). Uplift along the trend of the

Cambridge Arch-Chadron Arch was probably a latest Cretaceous-early Tertiary

event; up to 400 m of Cretaceous strata were apparently removed from the crest of

the Chadron Arch prior to burial by Oligocene sediments (PI. 3, fig. 12). As

reflected on Cretaceous structure (Fuenning, 1942; Merriam, 1963; Carlson and

Reed, 1969) and isopach (PI. 3, fig. 12) maps, the Cambridge Arch-Chadron Arch

trend marks the western margin of a shallow basin that occupies the general area

of the Salina Basin and Nebraska Sag (Kennedy Basin). It was apparently during

the Tertiary that other broad "Laramide" epeirogenic features developed, in

cluding: 1) broad upwarping along the trend of the Nemaha Uplift (Bunker, 1981),

and 2) upwarping along the Las Animas Arch in western Kansas and adjacent

Colorado, which separated the Western Kansas Basin from the Denver-Julesburg

Basin.

Cenozoic Nonmarine Deposition

At the onset of Tertiary deposition, the western portion of the central mid-

continent was an eastward sloping plain receiving sediments from volcaniclastic

material from western sources and epiclastic sediments from the rising Rocky

Mountains and Black Hills. This contrasts with the westward dipping regional

structural patterns in the Cretaceous. Oligocene bentonitic mudstones, silt-

stones, and channel sandstones (White River Gp) are preserved as far east as

north-central Nebraska, and represent the oldest Tertiary deposits in the western

portion of the central midcontinent. However, erosional remnants of Lower Eocene
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strata are known from northeastern Nebraska (M.R. Voorhies, 1984, pers. comm.).

Uppermost Oligocene/ Lower Miocene siltstones and sandstones, and volcaniclastic

material (Arikaree Gp) extend eastward into north-central Nebraska and adjacent

South Dakota, and overlie an eroded surface on the White River Group (Swinehart
et al., 1985).

Significant erosional downcutting of Arikaree and White River strata pre

ceded deposition of the Ogallala Group (ibid.). The Ogallala consists primarily

of sand, gravel, and silt with beds of limestone and ash. The Ogallala oversteps

the Arikaree/White River edge and unconformably overlies Cretaceous strata across

Kansas and eastern and southern Nebraska. Although many workers considered the

Ogallala to be primarily Pliocene in age, fission-track dating of intercalated

volcanic ashes indicates that much of the Ogallala is of Miocene age (Boell-

storff, 1978a). The Ogallala apparently includes some Pliocene strata in the

western portion of the central midcontinent, but a more complete Pliocene record

is preserved in eastern and central Nebraska (ibid.). The Ogallala is capped by
a persistent hard pisolitic limestone over much of its extent (Swinford et al.,

1958). This limestone is actually a form of caliche, but was formerly termed
the "algal limestone" (Elias, 1931). Significant erosional downcutting of
Ogallala strata, in places incised up to 150 m, preceded Late Pliocene-

Pleistocene deposition over much of the western portion of the central mid-

continent (Swinehart et al., 1985). Blancan (Late Pliocene) sediments filled

some of these valleys, but the deposits were subsequently dissected by later
Quaternary drainages.

In general, the Pleistocene sequence in the central midcontinent region in
cludes a complex series of glacial tills, fluvial sands and gravels, paleosols,
and lacustrine and aeolian deposits. Numerous Pleistocene erosional events

further complicate the.stratigraphy. Fission-track dating of volcanic ashes in
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the sequence helps bracket glacial episodes in the midcontinent (Boellstorff,

1978a, b). Two or more glacial tills are present beneath a 2.2 million year old

(m.y.) ash in western Iowa and eastern Nebraska, and represent the oldest

Cenozoic glacial deposits known in the U.S. Additional till units occur between

0.7 and 1.2 m.y. ashes and above a 0.6 m.y. ash (ibid.). These glacial deposits

extend across much of Illinois, Iowa, eastern Nebraska, northern Missouri,

eastern South Dakota, and northeastern Kansas; their distribution approximates

the southern limits of Pleistocene continental glaciation in North America.

Although the classic two-part "Nebraskan" and "Kansan" glacial stage ter

minology was originally proposed in the area containing this till sequence, new

stratigraphic investigations indicate that up to seven or more separate glacial

advances are represented in the sequence (ibid.; Hallberg and Boellstorff, 1978).

The included glacial till units and associated deposits (paleosols, aeolian/allu-

vial sediments) are now informally lumped together in the "pre-Illinoian" stage.

Eroded "pre-Illinoian" strata are covered by IIlinoian and Wisconsinan glacial

and associated deposits across much of the central and northern portions of the

central midcontinent. Wisconsinan loess deposits are especially well developed

along the Missouri River Valley. The Pleistocene sequence reaches thicknesses in

excess of 100 m in portions of western Iowa and eastern Nebraska. West of the

limits of glacial deposits in South Dakota, Kansas, and Nebraska, Pleistocene

alluvial and aeolian deposits are found in terraces of incised drainage systems.

Widespread Wisconsinan and Holocene aeolian deposits (loess, sand dunes) mantle

the terraces and upland bedrock surfaces (Reed and Dreeszen, 1965).

Quaternary depositional and erosional processes have shaped the modern land

scape in the central midcontinent. Although the area remains one of relative

tectonic stability, limited seismic data indicate that the midcontinent is cer

tainly not quiescent. Late Cenozoic Laramide-related epeirogenic movements prob-

34



ably account for the general eastward tilt of Ogallala strata across the Great

Plains (Merriam, 1963, p. 197). Erosional processes and human activities con

tinue to modify the modern midcontinent landscape.

Phanerozoic Igneous Activity

While the Phanerozoic rock record in the central midcontinent is almost com

pletely comprised of cratonic sedimentary sequences, a suite of alkalic to ultra-

mafic igneous rocks is known in the region from a set of widely scattered dikes,

sills, plugs, and diatremes. Isotopic age investigations and field relationships

of these rocks show that they were explosively emplaced during several Phanero

zoic episodes (Zartman, 1977). Within the study area, Upper Cambrian pyroclastic

rocks record explosive submarine volcanism at several localities in southeast

Missouri (Wagner and Kisvarsanyi, 1969; Snyder and Gerdemann, 1965; Kisvarsanyi

and Hebrank, 1982). In addition, a swarm of Devonian kimberlite and carbonatite

diatremes intrude Cambrian strata in the Avon area of southeast Missouri (Kid-

well, 1947; Zartman et al., 1967). These Phanerozoic igneous rocks are located

close to 38° N latitude, where an east-west trending axis of recurrent Phanero

zoic tectonic activity in eastern and central North America has been described

(Snyder and Gerdemann, 1965; Zartman, 1977).

Early Cretaceous kimberlite diatremes intrude Permian strata along the crest

of the Nemaha Uplift in northeast Kansas (Brookins, 1970; Brookins and Naeser,

1971). The Elk Creek Carbonatite (Treves et al., 1972a, b; Brookins et al.,

1975) intrudes Upper Pennsylvanian strata along the crest of the Nemaha Uplift in

southeast Nebraska (R. R. Burchett, 1983, personal comm.). Late Cretaceous peri-

dotite dikes intruding Upper Pennsylvanian strata are known along 38° N latitude

in southeast Kansas (Knight and Landes, 1932, Zartman et al., 1967; Franks et

al., 1971).

In addition to the known areas of explosive igneous activity in the central
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midcontinent region, a group of cryptoexplosion structures of possible explosive

igneous or extraterrestrial impact origin occur within the study area. These in

clude the Crooked Creek (post-Early Ordovician; Hendricks, 1954; Snyder and

Gerdeman, 1965) and Decaturville (post-Silurian; Snyder and Gerdemann, 1965;

McCracken, 1971, p. 23) structures located along 38° N latitude in southern Mis

souri, the Manson Anomaly (latest Cretaceous or Tertiary; Hoppin and Dryden,

1958; Witzke et al., 1983) in northwest Iowa, and the Rock Elm structure (post-

Early Ordovician; Cordua, 1985) in southwest Wisconsin.

Concluding Remarks

The modern structural geology of the central midcontinent, as portrayed on

three structural cross sections (PI. 3), reflects a complex Phanerozoic history.

Changing patterns of differential crustal movements characterized the region. In

comparison to some cratonic basin areas that displayed relatively long-term pat

terns of unidirectional subsidence (e.g., Michigan and Williston basins), basinal

development in the central midcontinent region was a more transitory phenomenon.

Areas of maximum basinal subsidence shifted within the region during the Phanero

zoic, and reversals in vertical crustal movements through time are apparent at

specific localities. The tectonic processes responsible for these complex pat

terns are poorly understood. The general correspondence of many Phanerozoic

structures to Precambrian basement features, such as noted along the MRS in

Iowa, suggests that midcontinent Phanerozoic tectonism may be, in part, a re

activation of earlier structures by deep seated crustal processes.

Text Figure #3 near here

The Phanerozoic burial histories of three different portions of the Forest

City Basin-Nemaha Uplift region are depicted in text figure 3. These subsidence

curves were constructed by following the general guidelines discussed by Siever

(1983), although no attempt was made to estimate the rates or magnitudes of com-
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pactional thinning during the accumulation of the strata. We have, however, made

an attempt to estimate the magnitudes of erosional exhumation that occurred dur

ing extended periods of emergence and/or uplift. The gross timing of deposi

tional and erosional episodes of all three areas were generally similar, but

differences in the original depositional thicknesses, chronologies and magnitudes

of post-depositional erosion, and resulting preserved thicknesses illustrate the

influence of differential vertical crustal movements on the Phanerozoic stratig

raphy of this region.

The Forest City Basin was a relatively short-lived asymmetric fault-bounded

sedimentary basin that subsided in synchrony with the ascension of the Nemaha Up

lift along the mutually bounding Humboldt Fault Zone during Absaroka Sequence

deposition (text fig. 3, A and B). Earlier and subsequent Phanerozoic sedimenta

tion in the area occurred in short-lived depositional basins whose structural

geometries were strikingly dissimilar. The resulting superimposition of several

discordant structural, depositional, and erosional patterns in the area obviates

simple classification of Phanerozoic structural elements in the central midconti

nent. Text figure 3 shows that the center of the Forest City Basin (text

fig. 3, A; Absaroka Sequence), the crest of the Nemaha Uplift (text fig. 3, B;

Tippecanoe Sequence, North Kansas Basin), and the eastern margin of the Forest

City Basin in central Iowa (text fig. 3, C; Sauk Sequence; Kaskaskia Sequence,

Iowa Basin) each have been the locus of maximum subsidence during different

Paleozoic intervals. Subsequent Mesozoic and Cenozoic sedimentation in the

region was controlled by tectonic and depositional regimes which were grossly

dissimilar to the preceding Paleozoic history.

Paleogeographic syntheses of various Phanerozoic intervals in North America

indicate that intraplate tectonism can be grossly correlated with episodes of

orogenesis along the continental margins. High angle faulting along the Humboldt
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Fault Zone apparently was contemporaneous with high angle block-faulting in the

Ancestral Rockies of the western Cordillera, and has been related to collisional

tectonics in the Ouachita-Marathon thrust belt (Kluth and Coney, 1981). Like

wise, the development of the north-south trending Mesozoic foreland basins of

North America have been placed in a larger plate tectonic context (Brenner, 1983;

Weimer, 1983). Bevelling of Cretaceous rocks by Cenozoic strata along the Chad

ron Arch and the western flank of the Nemaha Uplift indicates tectonic activity

that was roughly contemporaneous with the development of similarly-oriented, but

larger-scale Laramide uplifts to the west. These regional relationships indicate

that potential exists for integrating the Pennsylvanian-Cenozoic history of the

central midcontinent region into a larger continent-wide tectonic synthesis. The

relationships between earlier Paleozoic structural patterns in the central mid-

continent and coeval crustal deformation along the continental margins are more

obscure, however.

The Phanerozoic crustal dynamics of the central midcontinent region present

some of the most intriguing challenges to those interested in mechanically model

ling intraplate tectonism. It is still unclear to us which structures and defor-

mational episodes would be best explained in terms of isostatic crust-mantle

interactions vs. deviatoric stresses in the shallow crust. For example, does the

emplacement of Early Cretaceous kimberlites along the axis of the Nemaha Uplift

(Brookins and Naeser, 1971) indicate an extensional stress regime or anomalous

heat flow during Mesozoic reactivation of the structure (Witzke et al., 1983, p.

228)? How can the multiple reversals in the direction of vertical crustal move

ment which characterized much of this region be explained? Finally, can the

magnitudes of relative vertical crustal movements in the midcontinent be filtered

from the stratigraphic record to deduce the magnitudes of Phanerozoic eustatic

sea level changes? Sleep, Nunn, and Chou (1980, p. 31) have used the mean eleva-
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tion to the Dakota Formation-Graneros Shale contact from 90 well logs in north

west Iowa to deduce the magnitude of eustatic sea level change since the mid-

Cenomanian. Structure contouring of the overlying Turonian Greenhorn Limestone

(Bunker, 1981, p. 16), however, shows that the Cretaceous rocks of the region

have experienced relative vertical displacements of greater than 250 m. We are

unable to discern any stable "benchmark" in the region to which other areas

might be compared, and so find no reason to suppose that any part of the central

midcontinent has remained at a constant elevation relative to other areas for the

last 100 million years.
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Plate 3 Figure Captions

Figure 1. Structural configuration of the Precambrian surface in
the central midcontinent. Contour interval is 300 m; dashed where
Cambrian clastic rocks (Mt. Simon-Lamotte-Reagan) overlie Pre
cambrian elastics and position of contact is uncertain. M-Manson
Anomaly, a cryptoexplosion structure. HFZ-Humboldt Fault Zone.
Modified from Thwaites, 1957; Bradbury and Atherton, 1965; Carl
son, 1966; Kisvarsanyi, 1975; Cole, 1976; Bunker, 1982.

Figure 2. Sauk isopach map (excludes Mt. Simon Sandstone). Con
tour interval is 50 m. A-Sauk rocks absent, paleotopographic
highs of Precambrian rocks directly overlain by younger strata.
Modified from Merriam, 1963; Koenig, 1967; Carlson, 1970; Busch-
bach, 1975; Willman and Buschbach, 1975; Cole, 1975; Bunker,
1982.

Figure 3. Tippecanoe isopach map (excludes St. Peter Ss-lower
Simpson sand). Contour interval is 50 m. Modified from Merriam,
1963; Carlson, 1970; Willman and Atherton, 1975; Willman and
Buschbach, 1975; Cole, 1975; Bunker, 1982.

Figure 4. Silurian isopach map. Contour interval is 50 m.
PRFZ-Plum River Fault Zone. After Witzke, 1981.

Figure 5. Pre-Kaskaskia paleogeologic map. Modified from Mer
riam, 1963; Carlson, 1963, 1970; Miller, 1971, Bunker, 1982.

Figure 6. Total Devonian isopach map. Contour interval is 50 m.
PRFZ-Plum River Fault Zone. Modified, in part, from Collinson,
1967; Hilpman, 1967; Carlson, 1970.

Figure 7. Total Mississippian isopach map (includes undiffer
entiated Upper Devonian rocks in the Hugoton Embayment area).
Contour interval is 50 m. AFCB-"Ancestral" Forest City Basin
(Lee, 1946); MB-"Massena basin;" AT-"Appanoose trough." Modified
from Carlson, 1970; Horick and Steinhilber, 1973; Craig and Con
ner, 1979.

Figure 8. Pre-Absaroka paleogeologic map. PRFZ-Plum River Fault
Zone. Modified from Carlson, 1963; Merriam, 1963; Willman and
others, 1967; Bunker 1982; Bunker et al., 1985.

Figure 9. Lower and Middle Pennsylvanian isopach map. Basal
Upper Pennsylvanian rocks (Pleasanton Gp) are included. Contour
interval is 50 m. FCB-Forest City Basin; SB-Salina Basin; NU-
Nemaha Uplift. SKB-Sedgwick Basin. HE-Hugoton Embayment.
Modified from McKee and Crosby, 1975; Bunker, 1982; Burchett,
1982.

Figure 10. Pre-Cretaceous paleogeologic map. Modified from An
drews, 1958; Carlson, 1963; Merriam, 1963;.Wi1lman and Frye, 1975;
Bunker, 1981; Burchett, 1982; Munter et al., 1983.
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Figure 11. Sub-Tertiary and present-day outcrop distribution of
Cretaceous stratigraphic units. M-Manson Anomaly, a cryptoexplo-
sion structure. Modified from Fuenning, 1942; Merriam, 1963;
Burchett, 1969; Willman and Frye, 1975; DeGraw, 1971; Bunker,
1981; Munter et al., 1983.

Figure 12. Total Cretaceous isopach map. Contour interval is 150
m. M-Manson Anomaly, a cryptoexplosion structure. Modified from
Fuenning, 1942; Gries, 1954; Meriam, 1963; Willman and Frye, 1975;
DeGraw, 1971; Munter et al., 1983.
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Text Figure Captions

Figure 1. Generalized correlation diagram of Phanerozoic stratigraphic units in
the central midcontinent. Largely adapted from GSA COSUNA correlation
charts.

Figure 2. Generalized Upper Pennsylvanian "Kansas cyclothem." Modified from
Heckel, 1977, 1980.

Figure 3. Phanerozoic subsidence curves in the region of the Forest City Basin.
A. Center of Forest City Basin at tri-state border of Nebraska, Kan
sas, and Missouri. B. Crest of Nemaha Uplift in southern Pawnee
County, Nebraska. C. Eastern margin of Forest City Basin, in north
west Madison County, Iowa. Based on published data in Carlson, 1970;
Burchett, 1982; Bunker, 1982; and Witzke et al., 1983.
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Text Figure Captions

Figure 1. Generalized correlation diagram of Phanerozoic stratigraphic units in
the central midcontinent.

Figure 2. Generalized Upper Pennsylvanian "Kansas cyclothem."

Figure 3. Phanerozoic subsidence curves in the region of the Forest City Basin.
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KEY

MAPS

V/7X Present day outcrop area.
*23 Covered in part across the

northeast 3/4 of the study
area by Pleistocene glacial
deposits.

e.,^* Tertiary. Line denotes
present known eastern
extent.

K Cretaceous

• Area of pre-Cretaceous
erosion and overlap

Ku Undifferentiated

Kj-K^ Dakota Fm.-Baylis Fm.
Kw Windrow Fm.

KB Benton Group (includes
Graneros-Greenhorn -
Carlile Fms)

Kn Niobrara Fm.

KD Pierre Fm.

Jurassic
Ar«

erosion and overlap

P Permian

P Pennsylvanian
Area of \
erosion and overlap

r?T!l Area of pre-Jurossic

I I Area of pre-Pennsylvanian

M Mississippian
QAreo of pre-Mississippian

erosion and overlop

D Devonian
• Areo of pre-Devonian

erosion and overlap

S Silurian

U8M0 Upper and Middle Ordovician

LO Lower Ordovician

€ Cambrian

P€ Precambrian undifferentiated

(e2| Sioux Quartzite

a
Keweenawan intrusive

and extrusive rocks

Keweenawan
sedimentary rocks

CROSS-SECTIONS

Precambrian

{•'Jvj Clastic rocks (sandstone, siltstone, shale)

Mafic igneous rocks (basalt, gabbro)

2qI Quartzite (minor orgillite/phyllite)

Igneous S Metamorphic rocks
undifferentiated (mostly granitic)



Plate 3 Figure Captions (For Table of Contents)

Figure 1. Structural configuration of the Precambrian surface in the central
midcontinent.

Figure 2. Sauk isopach map.

Figure 3. Tippecanoe isopach map.

Figure 4. Silurian isopach map.

Figure 5. Pre-Kaskaskia paleogeologic map.

Figure 6. Total Devonian isopach map.

Figure 7. Total Mississippian isopach map

Figure 8. Pre-Absaroka paleogeologic map.

Figure 9. Lower and Middle Pennsylvanian isopach map.

Figure 10. Pre-Cretaceous paleogeologic map.
Figure 11. Sub-Tertiary and present-day outcrop distribution of Cretaceous strat

igraphic units.

Figure 12. Total Cretaceous isopach map.
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