Bedrock Geology of the Cedar Falls (Iowa) 7.5' Quadrangle

CONTRIBUTIONS TO THE BEDROCK GEOLOGY OF THE CEDAR FALLS 7.5' QUADRANGLE, BLACK HAWK COUNTY, IOWA

The Cedar Falls 7.5' Quadrangle, covering Black Hawk County, Iowa, is located in the central part of the state. The area is characterized by a combination of sedimentary and igneous rocks. The sedimentary rocks include dolomitic limestone, dolomite, and shale, while the igneous rocks consist of diorite and gabbro.

The Wapsipinicon Ridge Formation, which is present in the area, consists of dolomitic limestone and dolomitic shale. The Lower Silurian rocks, including the Silurian rocks, are also found in the area. The Silurian rocks form the bedrock surface in the deepest parts of the area.

ACKNOWLEDGMENTS

The authors acknowledge the contributions of Lundy of BMC Aggregates and Lee Pries of Paul Neiman Construction. The mapping work was supported in part by the U.S. Geological Survey.

REFERENCES


Wapsipinicon Ridge Formation of the group is present in the area. The Silurian rocks form the bedrock surface in the deepest parts of the area.

ACKNOWLEDGMENTS

The authors acknowledge the contributions of Lundy of BMC Aggregates and Lee Pries of Paul Neiman Construction. The mapping work was supported in part by the U.S. Geological Survey.

REFERENCES


Wapsipinicon Ridge Formation of the group is present in the area. The Silurian rocks form the bedrock surface in the deepest parts of the area.

ACKNOWLEDGMENTS

The authors acknowledge the contributions of Lundy of BMC Aggregates and Lee Pries of Paul Neiman Construction. The mapping work was supported in part by the U.S. Geological Survey.

REFERENCES


Wapsipinicon Ridge Formation of the group is present in the area. The Silurian rocks form the bedrock surface in the deepest parts of the area.

ACKNOWLEDGMENTS

The authors acknowledge the contributions of Lundy of BMC Aggregates and Lee Pries of Paul Neiman Construction. The mapping work was supported in part by the U.S. Geological Survey.

REFERENCES


Wapsipinicon Ridge Formation of the group is present in the area. The Silurian rocks form the bedrock surface in the deepest parts of the area.

ACKNOWLEDGMENTS

The authors acknowledge the contributions of Lundy of BMC Aggregates and Lee Pries of Paul Neiman Construction. The mapping work was supported in part by the U.S. Geological Survey.

REFERENCES


Wapsipinicon Ridge Formation of the group is present in the area. The Silurian rocks form the bedrock surface in the deepest parts of the area.

ACKNOWLEDGMENTS

The authors acknowledge the contributions of Lundy of BMC Aggregates and Lee Pries of Paul Neiman Construction. The mapping work was supported in part by the U.S. Geological Survey.

REFERENCES


Wapsipinicon Ridge Formation of the group is present in the area. The Silurian rocks form the bedrock surface in the deepest parts of the area.

ACKNOWLEDGMENTS

The authors acknowledge the contributions of Lundy of BMC Aggregates and Lee Pries of Paul Neiman Construction. The mapping work was supported in part by the U.S. Geological Survey.

REFERENCES


Wapsipinicon Ridge Formation of the group is present in the area. The Silurian rocks form the bedrock surface in the deepest parts of the area.

ACKNOWLEDGMENTS

The authors acknowledge the contributions of Lundy of BMC Aggregates and Lee Pries of Paul Neiman Construction. The mapping work was supported in part by the U.S. Geological Survey.

REFERENCES


Wapsipinicon Ridge Formation of the group is present in the area. The Silurian rocks form the bedrock surface in the deepest parts of the area.

ACKNOWLEDGMENTS

The authors acknowledge the contributions of Lundy of BMC Aggregates and Lee Pries of Paul Neiman Construction. The mapping work was supported in part by the U.S. Geological Survey.