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Abstract

A mathematical model for the determination of the surface
temperature of materials on the surface of the earth is derived
and solved numerically,

The material is assumed to be opaque and compact.  Its
surface is assumed to be flat and coincident with the plane of
the earth's surface. The problem is mathematically represented
by the following one dimensional heat conduction equation and

boundary condition:
(k/pc)32T(x,t) /3x2=3T(x,t) /3t 0<x

k3T (x,t) /3%
X

-0 =f[r(0,t) ,t]

T(x,0)=constant
The temperature of the material at distance x beneath its surface

at time t is T(x,t), The thermal conductivity, density, and

specific heat are k, p, and ¢ respectively and are assumed to be



constant. The function f is explicitly andvnonlinearly dependent
upon T(0,t) and t, and is composed of the following heating or
cooling effects: direct and scattered sunlight, radiant thermal
energy emitted by the material, air convection, evaporation, and '
condensation at the material's surface. The function of f is de-
pendent upon: the albedo, emissivity, and evaporation opportunity
of the material, the temperature, relative humidity, and wind
velocity of the air above the material, the declination of the sun,
and the geographical latitude of the material. The temperature,
relative humidity and wind velocity of the air above the material
were assumed to be constant. Results for T (0,t),flT(0,t),t], and
the various components ofif[T(O,t),t] are presented in graphical
form. Results for T(0,t) at various significant items t during the
solar day are given in tabular form, The solutions were carried
out for t sufficiently large that T(0,t) became approximately
periodic, The model predicts that the surface temperature of a
typical earth crust material at a given time is dependant only to
a rather small degree upon the temperature of the material more

than approximately 6 days prior to that time,

Introduction
The daily and seasonal variation of the surface
temperature of materials on the earth's surface is a
phenomena which is familiar to all of us. A quantitative
understanding of this phenomena and its natural causes is
important in temperature mapping of the earth's surface

by means of remote sensors located in air or spacecraft.



The surface temperature of a given material at a
given time of the year and day depends on a variety of
natural heating and cooling effects and on the inherent
properties of the material. Any reasonably practical
mathematical model designed to quantitatively predict
surface temperatures will not be accurate simply because
most natural heating and cooling effects are dependent
upon weather conditions, which are impossible to predict
accurately., With certain assumptions about weather
conditions, however, a mathematical model can be
developed which lends considerable insight into the sur-
face temperature phenomena and its causes, and which
can be used as a guide for the quantitative prediction

of surface temperatures.
Problem and Solution

The problem is to determine the surface temperature
of an opaque, compact material on the earth's surface.
Suppose that the material's surface, in contact
with the atmosphere, is flat and coincident with the
plane of the earth's surface. Further, assume that
conditions are such that, at a given time t, the tempera-
ture T of the material is the same at all points at
distance x vertically below the material's surface. The
distance x is zero on the surface and increases from zero
toward the earth's center, With this assumption regarding

T it follows that the following form of the heat equation



is valid in the material:
(k/pc)d2T (x,t)/9x2=3T(x,t) /9t 0<x (1)

The thermal conductivity, density, and specific heat are
assumed to be constant and are respectively denoted by
k, p, and c.

One also has:
k3T (x,t)/dx < = =f (t) (2)

where f(t) is defined as the rate of heat flow out of
the material at its surface per unit surface area.

Dividing f£(t) into 5 sSeparate terms:

_ 5
f(t) E _1fi(t) (3)

—fl(t)= (l~A)R0coseoexp(—.365sec90)/.90 (4)

A- Albedo of material.
R = Irradiance received from the sun above
earth's atmosphere (.139 wem™2) .

8o~ Sun zenith angle.

coseo=cosecos¢cos[2nt(24hr)—l]+sinesin¢

® - Declination of sun.
¢ = Geographical latitude of material on
earth's surface.

t - Local solar time.



4 3 -1
—f2(t)—€OTa (.37+,019Xam gm ") (5)

e - Absorbtance (emissivity) of material.

o - Stephan-Boltzmann constant (5.67x10 12
Wcm-2°K~4).

T ~ Air temperature above the material's

surface in degrees Kelvin.
x -~ Absolute humidity of air above material's

surface.
. _
f3(t)=eoT (0,t) (6)

£,(t)=[T(0,t)~T ] (1.09+.23V_sec el x

[ ]
(.000568 wem % k"1 (7)

14 - Velocity of air assumed to be moving
parallel to and above the materials
- surface.
T(0,t) - Surface temperature of material in

degrees Kelvin.

f5(t)=a{e[T(0,t)]—e[l;]Ra}(mm of Hg)"l x
(.44+.173V_sec ft71) (. 00183 wem™?) (8)
a - Evaporation opportunity of the material.
R « Relative humidity of air above
material's surface.
elT] ~ Saturated vapor pressure of water at

temperature T.
o -1 2
e[T]~[5.80 + .0295(T K ~<=273.2)" |(mm of Hg)

T - Temperature in degrees Kelvin.



The first term fl(t) approximates the radiant energy
from the sun and in addition that radiant energy received
from the sun but scattered by the atmosphere before
arriving at the materiai's surface. Most of this radiant
energy will have wavelengths in the .3-3 u region. The
semiempirical expression given for £,(t) was determined
from measurements taken during the summer in Colorado
(Hulstrom, 1970). It is intended to be a reasonable
approximation for clear atmospheric conditions only.

The second term f2(t) approximates the thermal
radiant energy received from the atmosphere. Most of
this radiant energy will have wavelengths in the 3-14 u
region and originates principally from the water vapor
in the atmosphere, Part of the expression given for
f2(t) was derived from graphically presented measured
data taken by Sloan et al. (1956).

The third term gives the thermal radiant energy
emitted by the material as dictated by the Stephan-
Boltzmann law.

The fourth term approximates the convective heat
loss (gain) due to the passage of air assumed to be moving
parallel to and above the material's surface. It is an
example of the so-called Newton heat exchange bouhdary
condition. The numerical coefficients in the term .were
~determined (McAdams, 1954) by laboratory experiments
measuring the temperatﬁre of a rough copper plate being
cooled (heated) by a wind of velocity v, parallel to the

plate's surface.



The fifth term approximates the heat loss due to
the evaporation of water from the material's surface.

This term was obtained by multiplying the evaporation
rate of water from the material by the heat of vapori-
zation of water. Several semiemperical formulae for the
evaporation rate of water from materials exist in the
literature (Wisler, 1949). The one chosen was determined
by Rohwer, and sea level barometric pressure was used in
his formula. The constant a is the so-called evaporation
opportunity (Wisler, 1949) of the materiél. For materials
containing no water a would be zero. For highly porous
materials which are saturated with water a would be
approximately 1.

The absolute humidity X, in term £, (t) is obtained
by means of the ideal law with temperature Ta and pressure
e ba]Ra, The approximation given for e[T] was determined
empirically from tabulations for saturated water vapor
pressure and is reasonably accurate for 273.2° K<T<310° k.

In terms f2(t), f4(t), and f5(t) the guantities Ta'
14 ) and R_ occur. These quantities depend upon weather
conditions and thus change with time. At first assume
that they are constant, and note that fl(t) depends
explicitly upon ¢, that_f2(t) is a constant, and that
f3(t), f4(t), and f5(t) depend explicitly upon T(0,t)

Thus:

f(t)=f[T(0,t),t]



In (1) and (2) T(x,t), x, and t have the dimensions

of temperature, distance, and time respectively.

Transform these three quantities into dimensionless form

by means of the following substitutions:
T(x,t)=K0u(y,T)

x=c y

t=S T
-0

where

1/40~1/4
=R
KO 0o -~

-3/40-1/4
=k
o %Ry

3/20-1/2kpc
=R =
: SO 0

The quantities u(y,t), y, and v are dimensionless

temperature, distance, and time respectively. In terms

of these new quantitiies (1) and (2) become:

8u2(y,T)/3y2=BU(y,T)/3T 0<y (9)

— ~1_
du(y,t)/dy y=0—f[K0u(0'T)'SOT]RO =F[u(0,t),t] (10)

The only place where t explicitly occurs in f(t) is
in the cos[2nt(24hr)~l] term for cos6; in fl(t). This

- -1
term becomes cos [2mn lr] where n=(24hr)s when one

replaces t by S _T.

0 The quantity n is dimensionless and is

inversely proportional to the square of the thermal inertia

(kpc}%.



u(y,0)=u 0%y (11)

0

The solution for u(0,t) as determined from (9), (10), and

(11) is (Carslaw and Jaeger, 1959):

“x gt -k
u(0,T)=u -7 "o (T-2) Flu(o,z),zldz (12)

Equation (12) was solved numerically. The pro-
cedure was to approximate F[u(o,é),z] in the uéual manner
by a series of polynomials of 1lst or 2nd order. An
indication of the accuracy of this procedure may be
obtained by comparing the results for u(0,t) for the two
orders. The discrepancy between u(0,t) using 2nd order
polynomials was less than .01% for t>0. The discrepancy
tended to become less for larger 1. These solutions
show that u(0,1)*u(0,t+n) for sufficiently large values
of t. This is particularly true for an appropriaté choice
for u,- This result is physically reasonable since one
would expect that u(0,t) would be mainly determined by the
forcing function F for sufficiently large 1, rather than
the material's initial temperature at some large time in
the past.

The numerical solutions were time phased in a manner
such that t and t were zero at 18hrs (6 PM) local solar
time. Solutions for u(0,t) were found for 0<t<én, or

equivalently 7(0,t) was found for 0<t< 6 days. Values for
T(0,t)-T_ at 6 hrs local solar time, T[0,12hr+n(24hr)] -T

a
in degrees Kelvin are given in Table 1 for two values of

TOEK0u0=T(X,0). The values taken for the constants in F



were: Aa=.05,€=1.0,R_=.25,V_=5 ft/sec,Ta=285°K,n=.l8,
a=.1,6=0, and ¢=45

Note that the values listed for T-T in Table 1
increase asymptotically with n for T0=279°K but decrease
asymptotically with n for T0=2859K. For sufficiently
large n both should converge to the same value. Previous
treatments of this surface temperature problem (Watson,
1971;: Jaeger, 1953) have used a periodic solution for
T(0,t). For these solutions the initial transient
behavior of T(0,t), which depends upon one's choice of
T(0,t), which depends upon one's choice of Tye is not
present., Such solutioﬂé are less complex but contain
less information particularly if one supposes that T, is
an appropriate earth subsurface temperature.

Referring to the previously listed values for the
constants in F, together with T0=282°K as the "standard
choice" of constants, figure 1 shows T(0,t), 5 days
<t<6 days, for the "standard choice" of constants. Figure
2 shows F(1)= 3 F (1) and F,(t)=f, (t)R 1, i=1,2,3,4,5,

i___l‘l .1 i 0
5 days <t<6 days again with the "standard choice" of

constants,

TABLE 1. 7T[0,12hr + n(24hr)] -~ T,
K
T,( K)
n 279 285
0 ~10.94 ~9,030
1 -10.44 -9.243

10



3 -10.25 -9.441

4 -10.21 -~9.495

5 -10.18 -9.536

TABLE 2. a, ,a,, and a_, of 7(0,t) for 5 days<t<6 days.

Constants al(°K) a2(°K) a3(°K)
standard 5.07 9.86 7.07
A=.15 5.76 10.1 | 5.14
e=.9 4.05 8.92 8.16
Ra=.75 3,66 8.37 8.44
v, =15 ft/sec 4.57 6.91 5.15
T_=295°K 7.57 11.9 4.38
n=.12 4,57 9.33 5.88
a=.5 7.44 11.7 3.74
#=.3 radians -1.10 8.29 15.3
T0=285°K 4,75 9.54 7.36

Table 2 shows the values found for a, s a2, and a3 as

depicted in Figure 1:
~a =T -
al (9,5 days) Ta

~a =T(0,t) . ~T

2 a

a_zT(o -
3 ( 't)max Ta

11
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Figure |. 7/0,7) for 5 days</<6 days and with

the "standard choice" of constants.
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Figure 2. /-;,F F3 F,, and F_ for 5 days<7<6 days



The minimum and maximum values for T(0,t), 5 days
<t<6 days, are respectively T(O't)min and T(O,t)maX.
Entries shown in the column headed "constants" in Table
2 show the departures from the "standard choice". Thus
A=.15 in the second row of Table 2 means that the selection
of constants was the “standard choice" except that a4 was
equal to .15 rather than .05 as it is in the "standard
choice". The reason that these results are in tabular
rather than graphical form is that the various curves
for T(0,t) are all very similar in shape but have different
values for a . a2, and a3. In every case T(O,t:.)ml,n was
realized at from 12 to 36 minutes after sunrise. Except
for the Va=15ft/sec and a=.5 cases, T(0,t) realized it's
maximum value at from 60 to 84 minutes after 12 hrs local
solar time. For the Va=15ft/sec and a=.5cases, T(0,t)
realized it's maximum value at from 36 to 60 minutes after
12 hrs. local solar time.

For an understanding of the results in Table 2 it is

important to understand the behavior of the terms Fi,

i=1,2,3,4,5, as they depend upon the constants in F. Fl

and F, are heating terms., F is a cooling term. F, and

F. can either heat or cool the material. The heating
effect of Fl is decreased for increasing a and, for
positive ¢ increased for 6 increasing from zero. The

heating effect of F, increases for increasing e, T, and

2

R _.
a

F_ is typically of greater importance than F but

1 2!

could have less net heating effect than F

14

when €, T
2 rTal



and R are large. The cooling effect of F is increased
for increasing e. F is perhaps typically the most
important cooling term. The effect of F, is to cool the
material when T(O,t)>Ta but to heat the material when
T(0,t)<T_. Its effect is increased for increasing v,
It's importance becomes considerable when v, becomes
sufficiently large. F, can either cool (evaporation) or
heat (condensation) the material. It's effect is
increased for increasing v, and a, and can be of con-
siderable importance when v, and/or a become sufficiently
large. 1It's effect tends to be that of cooling for small
R, and T,

Table 2 is quite incomplete. It contains only single
variable departures from the "standard choice" evaluation
of the constants. The table may, however, be used for
crude approximations for a general selection of the

constants via the first order Taylor expansion:

+ . . [ L)
ai(cl Acl,c2+Ac2, . c9+Ac9) ai(cl,cz, c9)
9
+'z chaai(cl,cz,--°c9)/acj
j=1
i=1,2,3

The "standard choice" evaluation of the constants are
CLeC, e, The partial derivatives aai/acj may be
approximated from Table 2. Departures of the constants

from the standard choice are ch.

It is appropriate to consider the limitations and

15



expected accuracy of these solutions. The term Fl assumes
clear atmospheric conditions, thus our results apply only
in this case. The constants T+ Vs and R_ are determined
by weather conditions and in reality change considerably
with time. It has been assumed that they are constant,
however. This assumption clearly introduces error into
the solutions. Transpiration from vegetation was not
considered so that our results do not apply to vegetation.

The model is clearly too simple to predict with any
accuracy surface termperatures that one would actually
measure in the field. It should, however, be useful for
predicting, with limited accuracy, the surface tempera-
tures of non-vegetated materials under clear atmospheric
conditions when Tor Vs and R are relatively constant.

In conclusion it should perhaps be emphasized that
relatively little attention has been given to the rate at
which the solutions presented in Table 2 become approxi-
mately periodic, Only the data presented in Table 1 deals
with this phenomena. Representing T[O0,t+n(24hr)] ,
0<t<24hr, by Tn(O,t), representative values of T5(0,t)
are given in Table 2. It is expected that Tn(o,t)sz(O,t)
for n sufficiently large. This is expected to be valid
for relatively small n if the 24hr time average of
To(0,t) and T, are not significantly different and n is

relatively large, Solutions were carried out for T(0,t),
0<t<12 days for the "standard choice" of constants except
6=.3 radian and with n=.18 and .0l6. For n=.18, a

17 "2
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and a, are respectively -1,099, 8.286, and 15.29 for

n=5 and -1.253, 8.135, and 15442 for n=11. For n=.016,

a a

Iy and a, are respectively -1.421, 4,400 and 6.421
for n=5 and -1.844, 4.004, and 6.784 for n=11. The
changes.in a;r a,, and a, are approximately .4 for n=.016
but approximately .15 for n=.18. It would be expected
that the changes for a, s a2, and a, would not be greater
than .15 for the solutions in Table 2. The value taken
by n for most earth crust materials is larger than .18.
The model would thus predict that the temperature of a
typical earth crust material at a given time is dependent
only to a rather small degree upon the temperature of the
material more than approximately 6 days prior to that

time.
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