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                                                                                                      058:268 Turbulent flows 
              G. Constantinescu 
Handout:  Large Eddy Simulation I 

 

Introduction to Subgrid-Scale (SGS) Models 
SGS Stresses should depend on: 

• Local large-scale field  

or 

• Past history of local fluid (via PDE) 

Not all models have these properties 

Importance of model in a calculation depends on energy in subgrid-scales 

• Low Reynolds number: ESGS/E ≈ 10-50%; results relatively insensitive to model, 

however results can be very sensitive to the numerics if artificial dissipation is 

present (e.g., convective terms are discretized using upwind schemes) 

• High Reynolds number: ESGS/E ≈ 1; model more important 

 

Requirements that a good SGS/SFS model must fulfill:   

-  represent interaction with small scales 

- the most important feature of a SGS model is to provide adequate dissipation 

(by this we mean transport of energy from the resolved grid scales to the 

unresolved grid scales; the rate of dissipation ε in this context is the flux of 

energy through the inertial subrange) 

-  the dissipation rate must depend on the large scales of the flow rather than 

being imposed arbitrarily by the model.  The SGS model must depend on the 

large-scale statistics and must be sufficiently flexible to adjust to changes in 

these statistics. 

-  especially in energy conserving codes (ideal for LES) the only way for t.k.e. 

to leave the resolved modes is by the dissipation provided by the SGS model.   

-  primary goal of an SGS model is to obtain correct statistics of the energy-

containing scales of motion  
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All the above observation suggest the use of an eddy viscosity type SGS model  

• Take idea from RANS modeling, introduce eddy viscosity Tν : 
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Simplest model has constant eddy viscosity: 

• Really DNS of lower Re number flow 

• Spectrum not controlled 

• Not successful in practice 

• Better model due to Smagorinsky 

 

Smagorinsky model 
 

• Dimensionally eddy viscosity is 12 −tl  

• Obvious choice: CqlT =ν  

- Turbulence length scale easy to define (unlike in RANS): largest size of 

unresolved scales is approximately ∆ 

   ∆=l   

- Velocity scale not obvious (smallest resolved scales, their size is of the order of 

the variation of velocity over one grid element) 

-  use lS
y
ulq =
∂
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 - Better choice for 3D flows:  

 ( ) 2/12 ijij SSS =  

Observation:  In RANS pretty much the inverse story, velocity scale is obvious 

(k1/2) while the turbulent length scale is tough to define and estimate 

- Combine previous expressions to obtain 

SCSC ST
222 ∆=∆=ν  
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• The above model is due to Smagorinsky (1963) 

- Designed for global weather modeling  

- Used for the first time in 1962-63 at NCAR.   

- Original grid contained 20*20*20 points. 

- Nowadays simulations using couple of million points are current! 

• Central problem: Need to specify value for parameter C 

 

More physical argument to derive Smagorinsky model: 

• Let’s look at the energy transfer from large scales 

 - Due to nonlinear term in NS equations 

• To obtain energy equation, take scalar product of NS equations with ui 
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• Second term describes the energy transfer between scales (recall previous 

discussion in wavenumber space), dimensionally vel_scale3/length_scale 

• Energy transfer = dissipation = LQ /3≈ε  

 - L=integral scale, Q=large scale velocity 

• If largest unresolved eddies are inviscid (close to reality if Re very large): 

∆≈ /3qε  

• Based on dimensional analysis: 

∆≈ qTν  

• By equating the two expressions for ε: 

3/1)/(/ LQq ∆=  

3/13/43/1)/( −∆=∆∆≈∆≈ LQLQqTν  

• Further assume: 

SLSSLQ ijij =≈ 2/1)(  

• Then: 
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SLCT
3/23/4∆=ν  

• This expression is somewhat different than the classical Smagorinsky model (two 

length scales are present) but, supposing one can estimate L, this form of the 

model is a more accurate expression for the SGS eddy viscosity.  This expression 

is also obtained analytically using more advanced theories of turbulence 

(EQDVM model). 

• Integral scale L difficult to compute, but we can assume: 

L/∆=ct    ;   in reality L/∆=f(Re, etc.)   

• So we recover usual form of model (the value of the constant changed) 

SCT
2∆≈ν  

• In reality C=C(L/∆)=C(Re, etc.)   

• May explain why variation of C needed to obtain accurate prediction of turbulent 

flows (this is going to be addressed later via dynamically calculating the model 

coefficient C)  

 

Smagorinsky Model can be derived in several ways: 

• Heuristically (two versions given above) 

• Inertial range arguments (Lilly) 

• Turbulence Theories (RNG) 

Constant predicted by all methods (based on theory, decay isotropic turbulence) 

2.0≈= CCS  

 

Theories of turbulence suggest a spectral eddy viscosity (Chollet and Lesieur) 

• Means a different eddy viscosity acting on each wave number k 

• Analogy with ordinary viscosity 

• Energy removed from wave number k is 

)(2)( 2 kEkk νε =  

• This suggest a spectral eddy viscosity of the form: 

)(2/)()( 2 kEkkTkT >=ν              as )(~)( kTk >ε  
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• T>(k)=net energy transfer to small scales 

 

It can be shown based on DNS calculations (isotropic turbulence) and a priory 

analysis that:  

• Spectral eddy viscosity constant at small k 

• Increases rapidly at large k (small scales which in a numerical simulation on a 

finite grid correspond to the cutoff wave number kc) 

 - Reason: main interaction is between smallest resolved scales and largest 

unresolved scales.  Eddy viscosity is largest between kc/2 and kc.   

• Findings can be used to construct models 

 

Parameter estimation (based on Lilly’s theory) 

Assume high Reynolds Number 

• Cutoff lies in inertial subrange (no prod, no diss, E=E(ε,k), k is kinetic energy) 

• Energy spectrum corresponding to the velocity is: 
3/53/2)( −= kCkE Kε  

• CK=Kolmogorov constant ≈1.4 - 2.2 

• In kinetic energy equation for resolved scales: 

2322 ∆== SCS STRS νε  

• Estimate the square of the strain rate: 
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• Use ∆= /πck , εε =RS  and previous two expressions to obtain 
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With 165.06.1 =⇒= SK CC  

• Other methods give almost same value 
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Classical Smagorinsky model 
 

Performance 

• Predicts many flows reasonable well 

• But there are problems: 

 - Optimum parameter value varies with flow type 

  *Isotropic turbulence 2.0≈SC  

  *Shear flows (e.g. channel) 065.0≈SC  

  *Factor 10 difference in eddy viscosity!! 

- Length scale uncertain with anisotropic filter 

             *Two possibilities are:    

  3/1
321 )( ∆∆∆  ;   2/12

3
2

2
2

1 )( ∆+∆+∆  

- Needs modification to account for: 

             *Rotation, stratification CS=F(Ri,….)     Ri=Richardson number 

*Near-wall region CS=F(y+); viscosity comes into play resulting in the 

need for further reduction of the model coefficient.  Van Driest damping is 

usually used but the results are not very good. 

   

Ways to improve the model: 

- dynamically calculate the model coefficient.  This is the dynamic 

Smagorinsky model 

- introduce transport equations for relevant quantities.  In particular, solving 

an equation for the subgrid kinetic energy allows a much better 

estimation of the velocity scale for the SGS fluctuations.  These are the 

one-equation SGS models. 

-   Both types of models are going to be discussed in details later.  
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A totally different approach (not based on eddy viscosity SGS models): 

 

Use small scales of LES itself, the smallest resolved scales are not very different from the 

largest unresolved scales.  Use that information for model construction.  This is the main 

idea behind the scale similarity model (Bardina et al.) 

 

Scale similarity model 

First model based on the small resolved scales: 

• We already made the point that the most important interactions involve 

interactions between the Largest subgrid scales and Smallest resolved scales 

• Need to define these scales 

Define velocity fields:  

• Unresolved scales )( ∆≤D            : 

      iii uuu −=′  (by definition) 

• Largest subgrid scale part defined by filtering: 

       iii uuu −=′  

• Smallest resolved scales )( ∆>D ;defined by second filter on the resolved field (of 

larger width, generally) 

            ii uu −  

Last two expressions are identical !!! 

 

• So we assume that these scales have similar structure (near grid cutoff).  In other 

words, we simply assume that the SGS stresses for the full velocity field are the 

same as the ones corresponding to the resolved field iu  

jijijijiij uuuuuuuu −−= ~τ   
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These ideas are clearer by looking at the following analysis of the relation among the 

different velocity fields 

 

Full Field 

iu  

 

Filter 

Resolved Field   Unresolved Field 

   iu                                                     ii uuui −=′   

Filter Again 

 

Largest   Transfer         Smallest 

                      (border between  

           resolved/unresolved) 

     iu                                   ii uuui −=′                       iii uuu ′−′=′′  

 

Another relevant discussion is related to what is called a priori testing of LES models 

using a precalculated DNS database (no actual LES simulation is needed). 

 

        A priori testing 

    Full DNS Field 

      iu  

Filter 

Resolved Field   Unresolved Field 

     iu                                                     ii uuui −=′   

             Evaluation 

Model SGS stresses   Exact SGS stresses 

   ijT Sν2− (for Smagorinsky)        jiji uuuu − (from DNS) 

   jiji uuuu −  (scale similarity) 
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Finally, compare results by correlation or scatter plot.  This way one can draw 

conclusions about the performance of a particular LES model.   

 

Other way to derive the scale similarity model 

Later, we are going to derive the scale similarity model as a particular case of a more 

general class of models based on reconstruction of the total velocity field from the 

resolved one (defiltering).   The main idea in these models is: 

 

• Use definition of resolved velocity: 

∫ ′′′= xdxuxxGxu ii )(),()(  

• Apply Taylor series to )(xui  : 

...)()()( +−′+≈′
dx
duxxxuxu i

ii  

• Keep only first term into definition of )(xui ′ to obtain same result: 

jijiij uuuu −=τ  

Performance of scale-similarity model: 

• Improves energy spectra (compared to Smagorinsky) 

• Can account for the transfer of energy from Small resolved scales → large 

resolved scales (backscatter accounted in a physical way) 

• Correlates well with exact stress (a priori analysis) 

• Not dissipative (does not dissipate energy automatically as Smagorinsky model 

with constant coefficient does, e.g., in laminar region of a flow the eddy viscosity 

and turbulence dissipation predicted by Smagorinsky model will be different from 

zero and positive, which is obviously wrong) 

• Inadequate as stand-alone SGS model (not very robust numerically as it does not 

introduce enough dissipation in some cases, needs to be combined with a purely 

dissipative model, e.g., Smagorinsky like; this is the main idea behind mixed 

models to be discussed later) 

• Basis for other models 


