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                                                                                                      058:268 Turbulent flows 

               G. Constantinescu 

Handout:  Large Eddy Simulation II 

 

Dynamic Smagorinsky model  
 

Idea: Calculate model parameter from smallest resolved scales 

• Similar to doing a priori parameter estimation on the fly 

 - Treating LES velocity field as exact (or as DNS field) 

• Technique  

 - Filter LES velocity as in an a priori test 

 - Use wider filter (test filter) than the original LES filter (grid filter) ∆>∆~  

  *Usually ∆∆ 2~~   

 - Assume same model applies at both levels with: 

  * Different length scale but same model parameter  

• Compute model parameter from simulation itself 

 - Then use it to compute eddy viscosity field in the simulation 

• No external information needed 

• Method is self-contained and self-consistent or dynamic 

• Gives variation of parameter with time, spatial location ),,,( tzyxCC dd =  

 

Recall general form Smagorinsky model: 
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In dynamic model ),,,( tzyxCC dd = . 
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From equation (1), the stress in the Smagorinsky model can be rewritten as: 

 

ikdik C ατ 2=          (2) 

ikik SS2∆=α  

 

- The main question is what should be the value of Cd?  

- We know that the optimum value varies from flow to flow and that its value should be 

reduced near solid walls to reduce the amount of dissipation introduced by the SGS 

model.   

- Can we obtain a model that can do that automatically? 

 

A basic introduction to the idea of dynamic modeling 

 

Consider an arbitrary nonlinear term t(u), which a is known function of the field 

variables, u, and suppose we wish to determine its filtered value by modeling the subgrid 

residual with an algebraic model m(u), which depends on the field variables but, in 

general, can also depend explicitly on space and time and on other parameters such as the 

filter width ∆.   The value of the filtered term is then the sum of the filtered and modeled 

parts: 

 

)()()( umutut +=                     (3)                          

 

The basic idea behind the basic procedure is to consider how t(u) and m(u) vary with the 

filter width.  In particular, an expression similar to the previous one for the value of the 

filtered term at a larger filter width, referred as test filter ‘~’, can be written as: 

 

)()()(
~~~~~
umutut +=                       (4) 

 

If relation (3) is test filtered and subtracted from (4) we get: 
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)()()()( umumutut −=−             (5) 

 

Remarkably, all the terms in this equation are computable from the resolved field.  It 

represents the ‘band-pass filtered’ contribution to the nonlinear term in the scale range 

between the grid and the test filter levels.  A consistent SGS model should contribute the 

same amount as the resolved field in this band.  The key to the dynamic procedure is to 

use this identity as a constraint for calibration of SGS models.  Note that while (5) is an 

exact identity when m(u) is the exact subgrid residual, it should only be expected to hold 

in a statistical sense when m(u) is modeled.   

 

 
 

 

Let’s choose t=uiuk and m(u ) a model for the stress ikτ as in equation (2).  Remember 

that by definition the subtest stress Tik is just ikτ  with ‘
_

’ replaced by ‘
~

’ 

(
~~~~~

jikiik uuuuT −= ).  The test filter width is taken normally larger than the width of the 

test filter (typically twice).  So from (5) we get: 



 4

 
~~~~~~~~

ikikkiki Tuuuu τ−=−         (6) 

 

in our case ikdik CT β2=   with ikik SS
~~~2∆=β , similar to αik in equation (2).  Relation (6) 

tells us that there is a relation between the modeled stresses at two different filter levels 

and the resolved stresses.  Equation (6) is also called Germano’s identity.  Upon 

introduction of the proposed expressions for Tik and ikτ , (6) can be satisfied only 

approximately.  The other important observation is that the left hand side of (6) is just the 

resolved stress denoted -Lik.   

 

)~(2 ikikdik CL αβ −≈−        (7) 

 

or 

 

ikdik MCL 22 ∆≈         (8) 

 

where  

 

~~~~~
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~~~~~~
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ikikik SSSSM −∆∆=    (9) 

 

To obtain equation (7), an additional assumption was made, that the model parameter 

can be removed from the filter as the test filter acts on ikdC α .  This is equivalent that 

assuming that dC is locally constant, which is not true.   

Thus 
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Equation (10) contains in fact a system of 6 independent equations that have to be used to 

determine only one constant.  Lilly proposed to normalize (10) by multiplying both Lik 

and Mik by Mik and sum over both i and k indices.  The final expression is averaged over 

the homogeneous directions in the flow (if they exists) to improve the robustness of the 

predictions (the coefficient Cd should be positive for stability reasons, something that is 

not guaranteed by the dynamic procedure).   
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where <> means summation over all points in the homogeneous direction. 

In a more general context and to be more consistent, a least-square procedure can be used 

to minimize the error eik in (7).  So all what one has to do is to minimize: 

  

ikikeeE =2 . 

 

ikdikikikdikik MCLCLe 22)~(2 ∆−=−+= αβ     (12) 

 

ikikdikikdik MMCMLCLE 42222 44 ∆+∆−=      (13) 

 

To minimize the error we require 0
2
=

ddC
dE .  So 

 

ikikikikd MLMMC =∆2         (14) 

 

Thus one obtains same expression for 2∆dC  as in (11) but in a more consistent way that 

can be used, as we are going to see later, for more complex models, including multiple 

coefficients models (e.g., mixed models).   
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Another important observation based on results from numerical simulations of various 

flows is that the model coefficient has large variations in fairly small regions of the flow.  

For instance, in simulations of (decay of) isotropic turbulence: 

 
222 10 ddd CCC ≈−        (15) 

 

which suggests that the removal of Cd from the filter in equation (7) was not justified. 

 

Dynamic Smagorinsky model: Advantages 

• Self-contained; no need to specify parameter 

• Inexpensive; adds 10-15% to cost (vs. constant coefficient Smagorinsky) 

• Removes some of the problems associated with constant coefficient Smagorinsky 

model but needs method to stabilize simulation 

• Eliminates need to prescribe length scale 

  - No need to choose formula for ∆ with anisotropic grid 

  - Dynamic method actually computes νt rather than Cd 

   *If ∆ changed, Cd changes to compensate 

• Predicts zero eddy viscosity in laminar regions of the flow 

• No need for near-wall correction 

- Gives proper near-wall behavior automatically  

- No need for wall-damping functions 

• No need to modify for ‘extra strains’ 

  - Stratification, rotation effects automatically included 

   *Reduces Cd where Richardson number high 

• Applied successfully to many flows, for example 

  - Homogeneous flows, simple free shear flows 

  - Rotating flows, stratified flows, atmospheric boundary layer 

  - Backward facing step, rib, diffuser 

• When it works well, it is self-compensating 

  - Suppose that there is too much energy in smallest resolved 
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   * Dynamic model will increase eddy viscosity 

   * Result is reduction of energy in small scales later 

  - Opposite behavior if energy is too small  

 

Dynamic Smagorinsky model: Disadvantages 

• Parameter variation too large 

 - Variance is ten times the mean (see above, eqn. 15) 

 - Produces large negative values of νt 

  *Can be negative for long time, over sizeable region 

  *Results in numerical instability 

 

Reasons for poor behavior: 

• Assumption of constant Cd in equation (7) is incorrect 

 - Should not remove from filter 

• Too much reliance on smallest scales 

 - Not accurately simulated, noisy 

• Rapid variation in both space and time of parameter and eddy viscosity (including 

the presence of negative values) 

 - causes numerical instability 

 - average value reasonable 

 - negative values something like back-scatter 

  * may be useful, but dangerous to include if too large  

 Simple way of reducing variation: 

  *average over space (local or over homogeneous direction) and/or time 

  * can average νt 

  * additionally filter (smooth) the predicted field of Cd 

 - Cutoff negative values of parameter (ν+νt ≥0) 

  *Called clipping 
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More advanced SGS models  

There are several ways to improve the deficiencies of the dynamic Smagorinsky model, 

especially for nonhomogeneous flows when averaging in one or two directions that 

would reduce the sharp fluctuations in the values of the model coefficient is not possible.   

 

A very consistent approach is the dynamic localization model of Ghosal et al. (1995) in 

which an integral equation is solved to determine the model coefficient.  There is no need 

to average expressions locally or in the homogeneous directions but an integral 

formulation of the identity (6) or (7) was used.   This identity rigorously removed the 

mathematical inconsistency (the fact that ikdC α
~~~~~~

 is not exact equal to ikdC α~ ) at the 

expense of solving an integral equation at each time step (this is computationally quite 

expensive, comparable to the solution of a Poisson equation).   The integral equation is 

obtained by minimizing a functional (in this case the integral of the error, see equation 

(12), over the entire domain).  If no additional constraints are imposed on Cd, the integral 

equation is linear.  If the additional constraint that Cd>0 is imposed everywhere in the 

flow the integral equation is nonlinear, thus more expensive to solve.   

 

Several simpler variants exist that reduce the computational overhead related to solving 

exactly the integral equation, but then one cannot mathematically guaranty that Cd>0.   

Piomelli and Liu proposed that instead of solving directly the integral equation for Cd, 

one can try to solve it iteratively.  At each new time step one has to make a guess for 
1+n

dC ; call it C* (simplest possibility n
dCC =* ).  One can substitute this value into the 

integral term and evaluate it.  Then determinate the new value of C* and iterate until 

convergence.  It was shown that the modified localized model works well for a number of 

flows (channel, bluff bodies) and computational cost is not much higher than the standard 

dynamic model.   

 

Another approach proposed by Meneveau et al. (1996) for non-homogeneous flows is to 

use Lagrangian averaging, meaning to take the average in (11) over a path line (back in 

time).   
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The use of a mixed model (discussed later) that includes a scale-similarity part will 

decrease the contribution of the Smagorinsky part and decrease significantly the level of 

spuriously high values of the Smagorinsky coefficient (aside from allowing backscatter 

effects to be correctly accounted for and in a numerically robust way).   

 

Finally, solving an additional transport equation for the SGS turbulent kinetic 

energy that allows us to determine the turbulent fluctuations scale (the total amount of 

energy in the subgrid scales, k) has also been shown to produce better distributions for 

Cd.  This approach will be discussed later.  

 

The Dynamic Lagrangian SGS Model (Meneveau et al., 1996) 
 

This model tries to improve the performance of the dynamic Smagorinsky model for non-

homogeneous flows. 

   

Rationale 

• Dynamic model not reliable without averaging 

 - Numerical instability 

• So some averaging necessary 

 - Global averaging successful but requires homogeneous direction 

 - Local averaging possible but results depend on volume chosen 

• Need an averaging procedure that works in complex flows 

 

Define Lagrangian averaging <> as: 

 

∫ −>==<
∞−

t
f dtttWtffI ')'()'(        (16) 

 

 

The idea behind using Lagrangian averaging in the formula for the model coefficient 
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is based on the consideration that memory effects should be calculated in a Lagrangian 

framework, following the fluid particle, rather than in an Eulerian framework, which sees 

different particles, with different histories, at each instant.  Thus the integral in (16) is 

carried out following a fluid path-line, W(t) is an exponential weighting function chosen 

to give more weight to recent times, n denotes the time step and, using (16): 

 

∫ −=
∞−

t
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t
ijijMM dtttWtMtMI ')'()'()'(        (18) 

To simplify the numerical implementation (where it is not easy/computationally efficient 

to integrate to far back in time) one can choose the weight function: 

 

)/exp(/1)( TtTtW −⋅=         (19) 

 

with the time constant defined as: 
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in which case one can show that the integrals (18) can be approximated by: 
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where H is the ramp function, the coefficient ε is defined as: 
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and the evaluation of the integrals (21) at tux n∆−
rr can be performed by linear 

interpolation.  In order to avoid complex values for T (see equation 20), if 0),( =txCd
r is 

reached, n
LMI is set to zero.  Of course, an extra parameter T that characterizes the 

averaging time was introduced.  Ideally the averaging time should depend on the local 

time scale. 

 

It was found that this way of estimating the model coefficient reduced the fraction of the 

points where the model will predict negative values and reduces the variability in the 

dynamic coefficient values with the effect of finally improving the robustness of the 

numerical simulation.  This model can also be combined with mixed models. 

 


