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                                                                                                      058:268 Turbulent flows 

               G. Constantinescu 

Handout:  Large Eddy Simulation III 

 

Other subgrid scale models: 
  

1.  Structure-function model (SFM) 
It is a transposition of the spectral-space model of Metais and Lessieur 

 
2/1)/)(( ccT kkEC=ν  

kc = cutoff wavenumber (π/∆x) 

 

into physical space and can be interpreted as a model based on the energy at cutoff 

expressed in physical space. 

 

Eddy viscosity can be written using dimensional analysis arguments as: 
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where 2
SGSq  is the SGS energy and F is the second-order structure function defined as 

power of velocity difference at two points: 
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Obviously, F is related to two-point correlation spectrum.  Main hypothesis is that the 

subgrid energy (k= 2
sgsq ) is proportional to the squared of the velocity gradient at the 

smallest resolved scales: 



 2

)(~)),(),((2/1 22 rFtxutxuq iisgs
rr

−=  

 

In three dimensions: 
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Analyze by using Taylor series: 
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If only one term is retained in Fk, then 
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Recall vorticity vector is related to the rotation tensor: 

 

jkijkij Ω= εω  

 

When this is plugged into eddy viscosity expression (1-D form for simplicity): 
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where we neglected Sijωij~0. 

So, SFM ( FCT ∆=ν ) is similar to Smagorinsky ( SCT
2∆=ν ) with 

 

 2/22 ω+→ SS  

 

Improved results reported; why? 

• Explanation offered: 2/22 ω+→ SS  helps improve results 

• In isotropic turbulence: 2/22 ω=S  so difference in models is small 

• Thus, this is not a very satisfactory explanation 

• If we keep two terms in the Taylor series expansion: 
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• Last term similar to fourth-order viscosity Smagorinsky like model 

- May explain success compared to the classical Smagorinsky model (which 

is a second order viscosity model).  This gives idea for improved 

Smagorinsky model to be described next. 
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2. Fourth Order Viscosity Models 
They are in fact mixed fourth-order / second-order models in which both coefficients can 

be calculated dynamically (dynamic 2-4 model).   
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where ν4 is usually called hyperviscosity and must be modeled.  Dimensional analysis 

suggests SC 4
44 ∆=ν .  So the new expression is: 
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The hyper-viscosity term is similar to the 4-th order term in the SFM model.   

For best results, use both 2nd and 4th order viscosities 

• Use dynamic procedure to determine the two constants C2 and C4 

• Least square method 

• Potential problem 

- Order of N-S equations increased (fourth-order PDE system instead of second 

order) so we may need more boundary conditions (two on each boundary).  To 

avoid this, one has to require that ν4→0 near boundary.   

Applied to: 

• 2D and 3D (decay) isotropic turbulence 

• Channel flow 

Advantages/disadvantages 

• Works well for flows mentioned above 

• Increased cost ≈ 20% 

• More accurate and more stable than 2nd order model 

• 4th order term important 

- Dynamic model makes it go to zero at wall automatically (so the problem of 

satisfying additional boundary conditions is eliminated automatically) 
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3.  One equation SGS models (Yoshizawa, 1986, Ghosal et al., 1994, Menon and 

Kim, 1996)   

 

The Smagorinsky model does not contain any information regarding the total amount of 

energy in the subgrid scales, k= 2
sgsq .  Therefore, if the model coefficient becomes 

negative in any part of the domain, the model does not have any information on the 

available energy in the subgrid scales and is therefore unable to provide a mechanism to 

saturate the reverse flow of energy.  A model that keeps track of k will address this 

problem.  Define eddy viscosity as:  

 
2/1kCdt ∆=ν  

 

Solution: solve PDE for subgrid scale energy 

• One equation enough 

 - No need for length scale equation in LES (use ∆) 

- Simpler than k-ε model, especially that the modeling of the unclosed terms in 

the ε equation is much more uncertain than the ones in the k equation. 

 

In this model the resulting model coefficient can still have either sign, but it was observed 

that numerical computations using this kind of models are much more stable when the 

coefficient is negative.  In other words, these models can account for relatively large 

amounts of backscatter in a numerically stable way.  The energy flows back and forth 

between the resolved and subgrid scales while their sum decays monotonically due to 

viscous effects in the absence of external input of energy.   

 

In this approach the stresses are modeled as (using simple dimensional analysis and using 

k for the velocity scale characterizing the unresolved turbulence fluctuations): 

 

ikdik SkC 2/12 ∆−=τ           
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As already mentioned, as opposed to RANS where the turbulence length scale is 

unknown and there is no simple way to determine it, in LES using SGS models (typically 

with implicit filtering) the turbulence length scale is the local grid space ∆.  This was 

used to obtain the previous expression for the modeled SGS stresses. 

 

Typically, the equation for k is similar to the one used in RANS models, but the form of 

the dissipation term is different.  In the original model of Yoshizawa the following 

equation was used: 
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The SGS viscosity was obtained using a constant coefficient Smagorinsky model 

( },,min{ zyx ∆∆∆=∆ ).  The model constants are: 

 

Cd=0.07 

Cε=1.05           

 

A more advanced variant was proposed by Menon and Kim (1996).  In this model using 

a second test filter of wider width than the filter at the grid level, the model coefficient is 

calculated dynamically, in a manner similar to the classical dynamic Smagorinsky model.  

The transport equation solved in their model is: 
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where 
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A different variant that also estimates dynamically the model constants using the dynamic 

localization model was proposed by Ghosal et al, 1995.    This variant guarantees positive 

viscosity. 

 

Advantages of the one-equation SGS models over the standard dynamic Smagorinsky 

model: 

 

- One-equation models can predict backscattering.  In the standard dynamic model the 

model coefficient must be averaged in the homogeneous directions and/or clipped in an 

adhoc manner to prevent the solution from diverging due to the local presence of negative 

diffusion.  This averaging and clipping often implies that 0>+ tνν , i.e., the production 

term should be larger than ijij SSν2− .  Obviously this greatly restricts the backscattering 

in the dynamic Smagorinsky model. 

 

- In one-equation models, when estimating dynamically the model coefficients, there is 

no need to average locally or in the homogeneous directions. 

 

-  Although in one-equation models it is necessary to solve one extra transport equation, 

because these models are numerically more stable, one can generally use larger time 
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steps and thus in the end these models may be computationally cheaper than the standard 

dynamic model.  One should also point out that by using the transport equation to 

determine k, memory effects are included into the resulting SGS model, something that 

is also lacking in the standard dynamic model. 

 

Problems: 

 

• Parameters (constants) in the k equation not known.  In many cases the values 

determined from RANS models are used. 

• Does not address major issue 

 - Problem is not the value of the eddy viscosity 

- It is the fact that the SGS Reynolds stresses and resolved strain principal axes 

are not aligned.  

* One can eventually address this deficiency by using a Reynolds stress 

model for the subgrid stresses, but the modeling of the unclosed terms and 

the determination of the constants is even a tougher problem. 

 

4.  Deconvolution models 
 

A - Estimation (reconstruction) of the unfiltered quantities from the filtered ones 

Consider the multi-dimensional series expansion for any scalar variable (velocity 

component, pressure, etc.) at a point xj=(x,y,z): 
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where index notation (summation is implied for indices present in the same term) was 

used for compactness.  Next, apply an anisotropic Gaussian filter: 
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with G (Gaussian filter in 3D) defined as 
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Using series expansion one can show that: 
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This is in fact a differential equation for ui.  Then one can use the previous expression 

recursively to estimate )( ii ufu = .  One obtains: 
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At this point if u denotes the velocity in equation (5), we partially reconstructed the 

total (filtered plus fluctuating part) velocity from the filtered (resolved) value that is 

calculated in LES.   

 

So, one can then estimate, for instance, the turbulent stress jiuu which in fact is what one 

need to do in order to close the filtered Navier-Stokes equations.   
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To compute SGS Reynolds stress: 

• Substitute approximate ui into definition of τij, compute it 

• Model defined, self-contained 

• Contains no parameters! 

• Model is nonlinear 

 

In other words we built a subfilter scale model using reconstruction (or defiltering or 

deconvolution) techniques.  Essentially we estimated the inverse of the filter that is 

applied initially on the Navier-Stokes equations. 

 

If the Gaussian filter is isotropic then equation (5) simplifies to: 
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Similar formulas can be obtained for other filters, in particular the top-hat filter. 

 

If we consider one mode of a velocity field, u=exp(ikx) and evaluate the one-dimensional 

sub-filter stress (SFS) as 22 uu −=τ  one can show that  

 

1) the filtered velocity takes the form   

 

       =u H(k∆)exp(ikx)         (7) 
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2) Up to a truncation of O(∆6), the series expansion used to represent the unfiltered 

velocity field becomes  
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The range of interest corresponds to wavenumbers k, such that k∆<π (resolved range of 

wavenumbers on a grid of size ∆).   

 

B - Sub-filter scale (SFS) models   

(models obtained by partially reconstructing the total velocity) 

 

Using the expression (6) for the partially reconstructed velocity one can derive several 

models for jijiij uuuu −=τ .  Neglecting the fourth and higher order terms in equation (6) 

and expanding only the unclosed term jiuu one can obtain the following model: 
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Model 1 
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Expanding also the explicit term jiuu one obtains  

 

Model 2 
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Observation: To second order in filter width Model 2 reduces to one of the most popular 

LES models: the Bardina scale-similarity model  (Model 3) which was originally defined 

based on other considerents. 

 

Model 3 (Bardina’s scale-similarity model) 

 

kikiik uuuu −=τ          (15) 

 

 
Bardina’s assumption: the resolved and unresolved stresses behave similarly, i.e., the 

subgrid scales near the filter cutoff can be extrapolated from the resolved scales near the 

cutoff. 
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Model 4 (Modified Clark model) 

 

Starting with the expression for Model 1 and using the fact that up to second order 

accuracy in equation (6) ii uu 2
2

24
∇

∆
−  can be replaced by the unfiltered variable ui, one 

can show that 
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and then one can use the same expression on the first and third terms to show that 

 

)(
12

4
2

∆+
∂
∂

∂
∂∆

= O
x
u

x
u

j

i

j

k
ikτ         (17) 

 

Obviously Clark’s model is 2nd-order accurate in filter width. 

 

Further remarks: 

 

SGS Reynolds stresses and resolved strain principal axes not necessarily aligned.   

• In a priori tests, correlation between filtered DNS stress and SFS stress is very 

high compared to any Smagorinsky based model 

• Need to distinguish subgrid and subfilter scales 

 - Reconstruction of field only possible for resolved (SFS) scales 

- Scales below grid size (actually, twice grid size) not represented – need SGS 

model 

• Add a Smagorinsky term (possibly dynamic) to represent SGS 

• This is in fact a dynamic mixed model to be discussed later 
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5.  The Approximate Deconvolution Model (Stolz and Adams, 1999) 
 

The main idea behind this model is the approximation of the non-filtered velocity field by 

truncated series expansion of the inverse filter operator.  The approximate deconvolution 

of the filtered velocity is obtained by repeated filtering operations (the filter is G) applied 

to the filtered quantities using van Cittert (1931) deconvolution method.  If the unfiltered 

velocity is iu  and the filtered velocity is denoted iu then: 

 

ii uGu ∗=          (18) 

 

or, if we invert it 

 

ii uGu ∗= −1          (19) 

 

But formally, if G has an inverse then it can be expanded as an infinite series that can be 

truncated up to an arbitrary order (let’s denote the approximate inverse using the 

truncated series up to order N by QN), let’s say N.   
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The series expansion provides an estimate for the inversion of the filter G.  This series 

converges if 1<−GI , where I is the identity matrix.  If G is positive in Fourier space 

for all wavenumbers, the exact inverse can be obtained by simply inverting the filter 

kernel in wave space.  If G crosses from positive to negative values in wave space at any 

wavenumber, exact inversion becomes impossible due to division by zero.  Therefore, the 

series reconstruction over all wavenumbers of such a filtered field is approximate.  The 

exact reconstruction can be obtained as long as the filter kernel is positive in wave space.  
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Thus, it is preferable to choose an explicit filter function that is positive for at least all the 

wavenumbers that are represented on the grid (up to the Nyquist frequency).  Then the 

approximate deconvolution is given simply by: 

 

...))(()()( +∗−∗−+∗−+=∗=∗
iiiiNi uGIGIuGIuuQu  (N terms) (22) 

 

One can show that if one retains N terms in (21) then the level (order) of the 

reconstruction is N-1.  The expression (22) for the unfiltered velocity is only used to 

calculate the term ∗∗
ji uu  in ijτ .  In practical calculations N is typically taken equal to 5 

and the ADM model is often combined with a dynamic Smagorinsky model to produce 

extra dissipation at the small scales (this is a common problem with practically all models 

based on reconstructing the turbulent stresses or the non-filtered velocity fields including 

the scale-similarity and the tensor-diffusivity models discussed previously).   

 

6.  The multiscale model (Hughes et al., 2001) 
 

The main justification behind this model is that most of the shortcomings associated with 

Smagorinsky based models are due to their inability to differentiate between large and 

small scales.  Recall that the SGS model is supposed to act only on the smallest scales not 

on all of them.  So, if a separation of scales is possible (this is indeed the case if we are 

using a fully spectral method where the Navier-Stokes equations are solved in 

wavenumber space in all three directions) then one can add the SGS Smagorinsky term 

only to the equations corresponding to the small scales (high wavenumbers), while the 

equations corresponding to the low wavenumbers are unchanged (like in DNS).  In other 

words, modeling is confined only to the equations governing the small scales.  The limit 

between the small and large scales is somewhat arbitrary, let’s say N/2, if N is the total 

number of modes supported by the grid. 

 

So starting with the Navier Stokes equations in physical space: 
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where u is the velocity vector.  If the solution is periodic in all three directions (e.g., 

simulations of isotropic turbulence in a box) then the Fourier series representation of the 

solution is 
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where k=(k1, k2, k3) is the wavenumber vector , x=(x1, x2, x3), kû and kp̂ are the Fourier 

coefficients of u and p, respectively.  One can easily show that the Fourier transform of 

the Navier Stokes equations are: 
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where kuu )( ⊗ is the k Fourier coefficient of the convective term (recall this term is 

nonlinear so its Fourier transform involves interactions with all the other modes; this is 

how the momentum equations for the coefficients kû  are coupled in wave space).  On a 

grid of size N3, the above equations are truncated to 12/2/ −≤≤− NkN j  for j=1,2,3.   

 

Next, the solution is decomposed into large scale and small-scale components: 
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where 
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and ( ) 2/12
3

2
2

2
1 kkkk ++= .  The modeling is confined to the small scales.  In physical 

space the Smagorinsky term is: 

 

'2 uT s
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where as usual the rate of strain tensor is   
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However, for the eddy viscosity we can use the modulus of the rate of strain tensor 

corresponding to either the small scales or the large scales (both options were shown to 

produce similar results at least for decay of isotropic turbulence): 
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or 
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The resulting form of the momentum equations in the wave space for the multiscale 

model is: 
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It was shown that simulations using a constant coefficient Smagorinsky model in the 

multiscale model produced more correct solutions for the decay of isotropic turbulence 

compared to solutions obtained using the dynamic model applied at all scales.  The 

dynamic procedure can of course be applied to the multiscale model.  There are attempts 

to propose multiscale models in physical space based on an approximate separation of 

scales.   
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7.  Dynamic mixed models 

 
It was observed that for most complex flows use of a scale-similarity (deconvolution 

based) model alone does not produce enough dissipation and the code becomes unstable.  

In practice deconvolution models are supplemented by a dissipative (Smagorinsky like) 

SGS model.    

 

 
 

In particular, in the case of the scale similarity model (Model 3) 

 - Two versions 

  a. Consider coefficient of scale similarity term fixed (usually unity) 

*Determine Smagorinsky parameter by least squares method (Zang 

& Street) 

  b. Two parameter dynamic model (Salvetti & Banerjee) 

*Smagorinsky, scale similarity parameters both determined 

dynamically 

 

a) ikdkikiik SSCuuuu 22 ∆−−=τ          (34) 

or more generally  
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ikdikik CA ατ 2−=          (35) 

ikikkikiik SSuuuuA 2∆=−= α  

 

b) ikdkikissik SSCuuuuC 22)( ∆−−=τ        (36) 

 

or more generally  

 

ikdikssik CAC ατ 2−=          (37) 

 

Exactly as in the case of the determination of the Cd constant in the classical dynamic 

Smagorinsky model, by minimizing the error one can obtain the expressions of the model 

constants in both models.  For instance, in case (a): ikdikik CBT β2−= , 

kikiik uuuuB ~~~~ −= , ikdik SSC
~~~2 2∆−=β  and 

~~~~~
kikiik uuuuL +−= is the usual Leonard term.  

Thus the error can be calculated as: 

 

ikdikikikikdikikikikikikik MCNLCABLTLe 2)~(2)~(
~~~

+−=−+−−=+−= αβτ  (38) 

 

where to simplify the calculation we used  

 

ikikik ABN ~
−=   

ikikikM αβ ~−=          (39) 

 

So all what has to be done is to minimize ikikeeE =2  in a least square sense to obtain: 

 

a)  
MM

NMLM
d P

PPC −
−=

2
1         (44) 
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b)  
NNMMMNMN

LNMMLMMN
ss PPPP

PPPPC
−
−

−=        (40) 

      
NNMMMNMN

LMNNLNMN
d PPPP

PPPPC
−
−

−=
2
1        (41) 

 

where >=< ikikEF FEP  and <>  denotes average over the homogeneous directions. 

 

Performance 

• Variation of Smagorinsky part coefficient Cd very much reduced 

• Without averaging, program is much more stable 

 - But can still be unstable 

• One parameter version as good as two parameter version 

• Gives good results for several flows 

 

8.  Filtering and commutation 

 

• Filtering defines large scale field and its governing equations 

• Virtually all Smagorinsky based LES calculations to date have ignored explicit 

filtering of the Navier Stokes equations. 

• If deconvolution (or, in general SFS) based models are used then the quality of 

the explicit filter is essential in the accuracy of the final simulation  

• Filtering and differentiation do not in general commute for non-uniform filters 

 

 

 

 

• Commuting filters for non-uniform filter widths and unstructured grids were 

recently proposed (Vasilyev & Moin, JCP, 1998, Marsden et al., JCP, 2002, 

Haselbacher & Vasilyev, JCP, 2003) 

 

 

x
f

x
f

∂
∂

≠
∂
∂
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When using explicit filtering: 

 

• Filter width should not be tied to grid spacing. Preferably: 

 

 

 

 

• LES solution should converge to true solution of the LES equations with grid 

refinement, and not to DNS 

 

9.  The dynamic model without test filtering (Chester, Charlette and 

Meneveau, 2001) 
 

This model was motivated by the fact that the construction of accurate test filters in 

complex geometry flows, in particular in codes that are using unstructured grids with 

large non-uniform variations between element sizes, is very difficult.  Moreover, just 

choosing the neighboring elements that have to be used in the local construction of the 

filter is a challenging problem in itself that is needed to maintain a good shape for the 

resulting filter.    The idea behind the present model is to replace the actual test filtering 

of the solution by estimating higher order derivatives of the resolved velocity field in 

the general expression for the dynamic Smagorinsky coefficient: 

 

><

><
=∆

ijij

ijij
d MM

ML
C

2
12         (42) 

 

~~~~~
kikiik uuuuL +−=         ( )

~~~~~~
2 ~~

/~
ikikik SSSSM −∆∆=     (43) 

 

These derivatives can be estimated in a much easier way and relatively accurately using 

least square algorithms on unstructured meshes.  The proposed method is also based on 

gridfilter ∆>∆
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Taylor series expansions of the resolved velocity field, as was the case in the models 

based on reconstructing the unfiltered velocity from the filtered one.   

 

Let’s define a function f and its filter (grid filter) as: 

 

∫ −=
∞

∞−
∆ ')'()'()( dxxfxxGxf          (44) 

 

where  

 

),,( 321 xxxx =  

 

The test filtering operation (denoted by tilde) is defined in a similar way, except that the 

filter acts on a larger scale ∆~  (typically the ratio is equal to 2).   

 

∫ −=
∞

∞−
∆ ')'()'()(

~
~ dxxfxxGxf         (45) 

 

Let’s replace )'(xf by its Taylor series expansion about the point x.  This leads to simple 

integrations that are performed analytically.  The result is: 

 

><∑ ∂
−

=
∞

=
nn iix

n

n
ii

n
yyf

n
xf L

K 11
|

!
)1()(

~

0
 

 

y=x-x’ 

 

dyyGyyyy
nn iiii )(~

11 ∫>=< ∆LL        (46) 

 

For an isotropic filter, all terms with n odd vanish, so one can take m=2n. Since 

derivatives can only be calculated to a limited accuracy, and the Taylor series are 
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truncated, the method yields an approximation to the filtered operation.  By varying the 

number of terms in the Taylor expansion and the way the derivatives are calculated, the 

accuracy of the approximation can be varied.   

 

Let’s choose the Gaussian filter as the grid and test filters (others filters such as the box 

filter can be used but the final expression will be different): 
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           (47) 

 

Introducing (47) into (45) one can show using the properties of the moments for the 

Gaussian filter that 

 

( ) )(
!24

)~()(
~

0

2
2

xf
m

xf
m

m m

m
∑ ∇

∆
=

∞

=
       (48) 

 

where m)( 2∇ represents m applications of the Laplacian operator.  This expression 

allows to replace test-filtered quantities that appear in the dynamic model by expressions 

involving resolved (grid-filtered) quantities and their derivatives. 

 

Application of (48) to jiji uuuu ,, , ijij SSS ||, yields the approximation (up to four order 

in ∆): 
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where tS  is the derivative based approximation to S
~
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The last three expressions are introduced in the definition of the model coefficient (42).   
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10.  Numerical methods in LES 
 

• It is important for LES calculations to predict accurately the quantities that led to 

choosing LES in the first place (e.g., turbulent fluctuations, acoustic sources, 

mixing,…) 

 

• Numerical dissipation present in most RANS codes is inadequate for LES (c.f. 

flow over cylinder) 

 

• Ideally in LES nondissipative discretizations (central differencing as opposed to 

low order upwinding or any extra added numerical dissipation) must be used. 

 

 

 
 

 

Numerical dissipation in 
LES of cylinder @ Re=3,900 

 
Mittal & Moin (AIAA J., 1997, 8:1415 – 1417) 

One-dimensional streamwise velocity spectra E11 along the wake centerline
 
Vertical lines indicate the grid cutoff: 
           central difference 
           upwind biased  

ω-5/3 

ω/ωst

experiment  
(Ong & Wallace) central difference

upwind biased
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11.  Model free LES 
 

High-Re ‘Direct Simulation’ 

Claim- DNS of complex high Re flows 

• High Reynolds number flows simulated (106) 

• Complex geometries: e.g. Automobiles, reasonable qualitative results 

Important to note 

• Third order upwind differencing used (several types) 

• This means that in fact the coarse DNS was an LES with 4th order dissipation that 

looks like hyperviscosity, but the local amount of dissipation is controlled by the 

grid size and discretization of the convection operator.  This is bad as, for 

instance, one cannot get grid independent results.    

 

For LES simulations one can think similarly.  Why not discretize the convective terms 

in a way to be consistent with a SGS model? 

 

Model-Free LES 

• Use numerical error (dissipation introduced by the discretization) as model 

• Example: monotonically integrated LES (MILES) 

• Another version recently given by Los Alamos 

 - Use scheme that eliminates wiggles 

 - Similar to schemes used in aerodynamics 

 - Has nonlinear limiters  

 

Performance: 

• Produces reasonable looking simulations 

• Quantative comparisons rarely made 

• Model has lots of parameters that can be adjusted to produce better looking results 

but they are highly flow dependent.  No dynamic way to estimate them. 

• Results are grid dependent.  Value not proven.  To be avoided. 
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12.  SGS Models for Transition 
Prediction of transition important 

• Difficult for boundary layer 

 - Processes are very complex 

• Free shear flows easier 

- Instabilities are inviscid 

 

DNS difficult, expensive 

• Small scales develop far from wall in boundary layer 

 - Hard to determine location in advance 

• Numerically unstable without very fine grid 

 

LES desirable 

• Constant coefficient Smagorinsky model behaves poorly; relaminarizes flow 

 - Too much viscosity introduced too early 

• Need other models 

 

More successful Models: 

• Ramped Smagorinsky 

 - Increase parameter Cd slowly starting from zero 

 - Arbitrary; unclear how fast to increase parameter 

• Dynamic model 

• Deconvolution based models 

 

 


