058:268 Turbulent Flows

Handout: Boundary Layers

Differences to Turbulent Channel Flow

e Boundary layer develops in the flow direction, 6 = 5(x)
e 7, not known a priori

e OQuter part of the flow consists of intermittent turbulent/non-turbulent
motion

But behavior of the flow in the inner layer (%(x) < 0.2) is very similar to channel flow

In the defect Iayer(%(x) > 0.1), the departures from the log law are more significant

Definition

Fig. 1 Sketch of a flat-plate boundary layer
Assumptions:

- Statistics independent of z: <W>=0

- As the boundary layer continuously develops in the x direction, statistics depend on
both x and y.

- Up=Uo(X)

Bernoulli equation for free stream:

Po (X)+ %pU g (x) = const
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Thus, accelerating flow corresponds to a negative or ‘favorable’ pressure gradient.



Decelerating flow yields a positive or ‘adverse’ pressure gradient

Boundary layer thickness &(x) defined as the y value at which

(U)(%,¥) ly-5=0.99U5 ()

This quantity depends on small velocity differences. More reliable ways to characterize
the thickness of boundary layer are:

Displacement thickness
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Momentum thickness
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Relevant Reynolds numbers:
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Critical Reynolds number for zero-pressure gradient boundary layer:

Flow is laminar from x=0 to a location x (which defines the start of transition) which
corresponds to

6
Rey crit ~10

but this value is also dependent on level of disturbances in the free stream.

The boundary layer typically becomes fully turbulent over some distance (~30% of the
distance from the leading edge to the start of transition)

Mean Momentum Equations

- Flow develops in the x direction
- Axial stress gradients are small compared to cross-stream gradients

The lateral momentum equation reduces to:
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Integrate (2) from the wall (y=0) to freestream where the velocity fluctuations are equal
to zero:

Po(X) = pyw(Xx) (=wall pressure)
Integrate (2) fromOtoy
(p)+p(v*) =P, (x) = Py (x)

The Mean Axial Momentum Equation is:
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and using (1)
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where the shear stress is defined as:
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and a—was neglected as were all the other contributions from streamwise gradients of
X

Reynolds stresses (boundary layer approximation) in the original form of the axial
momentum equation.

In contrast to channel flow, convective terms are non-zero and cannot be determined
easily!

At the wall (y=0) use (3) and the fact that the convective terms are zero, to obtain
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If the freestream pressure gradient is zero and using the definition of the shear stress (4)
and the fact that <uv> increases from zero at the wall proportional to y*:
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which shows that the mean streamwise velocity profile varies linearly with y near y=0.

Integration of momentum equation leads to von Karman integral momentum
equation
<p0>

OX
Use continuity equation and rewrite (3) for zero pressure gradient as:

(Derivation for =0 so0 Uy is not a function of x)

Integrate from 0 to « with y:
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Add/substract | %dy and integrate second and last terms (in the free stream <V>=0
0 X

and the shear stress 1=0)

T2y pys U 0 aye v = s

00X 0 LY % =

Continui'[y'—M ) ’
G

Recall definition of 0
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Mean Velocity Profiles
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Fig. 7.27. Mean velocity profiles in wall units. Circles, boundary-layer experiments of
Klebanoff (1954), Rey = 8,000; dashed line, boundary-layer DNS of Spalart (1988),
Reg = 1,410; dot—dashed line, channel flow DNS of Kim et al. (1987), Re = 13,750;
solid line, van Driest’s law of the wall, Egs. (7.144)7.145).

Fig. 2 Mean velocity profiles in wall units (experiments and simulations)

= Law of the wall still holds in the log-law region, buffer layer and the viscous sublayer
(u'=y").

Question: What form does the law of the wall take in the buffer layer (5<y*<30-50)?

Van Driest Damping function for buffer layer

2
Mixing length hypothesis: - p <uv >=v, 0<U>_ I%(a <V >j
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So from (4):




with Ij =1,/5,,u" =<U>/u,, u,=\r,/p,y" =ylo,
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To integrate (5) all what we have to do is to specify I, =1 (y™)
But we know that in the Log Layer: I,=ky
= Ih=xy" (6)

which can be used to determine u” in the log-layer.

If same specification of the mixing length would be used in the viscous sub-layer:
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= (uv) =-vy whereas it is well known that

<uv>~(y)®

= incorrect y* (ory) dependence (should be y*s):

So the specification I,=ky should be reduced, or damped, near the wall.

= Van Driest damping function assures proper transition to viscous sublayer
+

15 = ky " [L— exp(—%)] with A"=26 7)

This is a purely empirical formula, but it works reasonably well and it is used in many
wall models, especially in LES. For large y*, the damping function tends to unity and the
log law is recovered.



Equation (7) can be used to integrate equation (5) over both the viscous sublayer and the
log layer to determine u” and thus the mean velocity profile <U>.

Velocity Defect Law

In the defect layer (y/6>0.2, say) the mean velocity deviates from the log law as can be
seen from Fig. 3.

wake contribution

Fig. 7.28. The mean velocity profile in a turbulent boundary layer showing the law
of the wake. Symbols, experimental data of Klebanoff (1954); dashed line, log law
(k = 041, B = 5.2); dot—-dashed line, wake contribution ITw(y/8)/x (I1 = 0.5); solid
line, sum of log law and wake contribution (Eq. (7.148)).

Fig. 3 Mean velocity profile in a turbulent boundary layer

From an extensive examination of boundary-layer data, Coles (1956) showed that the
mean velocity profile over the whole boundary layer is well predicted by the sum of two
functions:
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Law of the wall Law of the wake



The wake function w(y /o) is assumed to be universal (same for all boundary layers), and
is defined to satisfy the normalization conditions

w(0)=1 and w(1)=2

The wake strength parameter IT is flow dependent
A convenient approximation for w(y/o)is:
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Approximate f,, by the log law
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For given Re; this equation can be solved for u, /U,
= Skin friction coefficient is
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Velocity defect law (subtract (8) from (9))
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Eddy Viscosity in Defect Layer

Eddy viscosity definition Vi =

Eddy viscosity model (mixing length)
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Defect layer: the shear stress t(y) is less than t,, and the velocity gradient W is larger

than the value u, /(xy) given by the log law.

This means that the value of v; is less than the one given by the log-law formula
vy = Uu_ky and, consequently, the mixing length |_ is smaller than xy in the defect later.
This is confirmed by results from DNS in Fig. 4
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Fig. 7.30. Turbulent viscosity and mixing length deduced from direct numerical sim-
ulations of a turbulent boundary layer (Spalart 1988). Solid line, vy from DNS;
dot-dashed line, £, from DNS; dashed line £n and vy according to van Driest's
specification (Eq. (7.145)).

Fig. 4 Turbulent viscosity and mixing length variation in a turbulent boundary layer.

Thus |, has to be adjusted. One simple way to do that is

|, = min(xy,0.090)



