058:268 Turbulent Flows

Handout: Channel Flow - Mean Velocity Profiles
Similarity
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One can do the same analysis for the Velocity Gradient:
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dy y 586,
dy is the appropriate length scale in the viscous wall region, while & is the appropriate
length scale in the outer layer

The law of the wall

Prandtl (1925): In the inner layer ( % <<1) and at high Reynolds numbers <U> is
determined only by the viscous scales
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The integral of the previous equation is the Law of the Wall valid in viscous sublayer
and the inner layer (y/d<0.1)
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From equation (3)
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Hence, the Taylor series expansion for small y*

ut = f,(y") = £, (0) + £, (Q)y" +O(y*?)
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Fig. 7.5. .Ncar-wall profiles of mean velocity from the DNS data of Kim et al. (1987):
dashed line, Re = 5,600; solid line, Re = 13,750; dot-dashed line, ut = yt.

The Log Law

At large Reynolds numbers, the outer part of the inner layer corresponds to large y*

where viscosity has little effect (® independent of %)
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where the edge of the inner layer was defined at 0.19.

So if Re,is such that %» Re;! and y* = y/8, <0.1Re,

@, (y") independent of both %V (viscosity) and of y5 , thus from equation (2):
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with
x =0.41 (Von Karman constant)
B=5.2
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Fig. 77. Mean velocity profiles in fully de -

. 7 v y developed turbulent channel flo

by Wei and Wl]lm_arth (1989): O, Rep = 2,970; O, Re, = 14,914: A Re‘.;llr -‘-n ;;sg?ﬁd
V. Reo = 39, 582; line, the log law, Eqs. (7.43)(7.44), o .
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Fig. 7.8. A sketch showing the various wall rcgfons and layers defined in terms of
y* =y/d, and y/8, for turbulent channel flow at high Reynolds number (Re, = 10%).
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Fig. 7.13. Regions and layers in turbulent channel flow as functions of the Reynolds

number.



Velocity Defect Law

In the outer layer (y™ >50) the assumption that @ is independent of v implies that, for

large y @ tends asymptotically to a function of y/3 only:
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By integrating in y from y to ¢ (channel centerline)
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Unlike the law of the wall function f,,(y™) which is universal, the function FD( )|s

different in different flows.

At sufficiently high Reynolds numbers (approximately Re>20,000) there is an overlap
region between the inner layer and the outer layer (see Figs. 7.8 and 7.13). In this region
both equations (1) and (4) are valid
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This can be satisfied only if the two functions on the right hand side are equal to the same
constant (1/x), which leads to
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For small y/3, the velocity defect law (equation 5) can be written as:

Uo—<U>=FD(Xj:_l|n%+Bl (6)
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The value of the flow-dependent constant B; is ~0.2 based on DNS and ~0.7 based on
experimental data for channel flows.

Statistics in turbulent channel flows:

Table 7.2. Statistics in turbulent channel flow, obtained from the DNS data of
| Kim et al. (1987), Re = 13,750 - |

Location

Peak production Loglaw Centerline
yt=118 yt=98 y* =395

(W) /k 1.70 - 1.02 - 0.84
(0%)/k 004 039 057
(W) /k 026 0.59 0.59
(uv)/k -0.116 —0.285 0
Puv —0.44 —0.45 0
Sk/e 15.6 32 0
Ple - 181 091 0
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Fig. 7.14. Reynolds stresses and kinetic energy normalized by the friction velocity
against y* from DNS of channel flow at Re = 13,750 (Kim et al. 1987).
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Fig. 7.15. Profiles of Reynclds stresses normalized by the turbulent kinetic energy
from DNS of channel flow at Re = 13,750 (Kim er al. 1987).

Fig. 7.16. Profiles of the ratio of production to dissipation (P/e), normalized mean
shear rate (Sk/e), and shear stress correlation coefficient (p,,) from DNS$ of channel
flow at Re = 13,750 (Kim et al. 1987).
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Fig. 7.18. The turbulent-kinetic-energy budget in the viscous wall region of channel
flow: terms in Eq. (7.64) normalized by viscous scales. From the DNS data of Kim et
al. (1987). Re = 13,750.



